Fink SNAD Anomaly Detection Model
Project description
Fink anomaly detection model
A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.
fink_ad_model_train
The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:
- _g_means.csv and _r_means.csv -- averages over the training dataset;
- _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
- forest_g_AAD.onnx -- model for _g filter
- forest_r_AAD.onnx -- model for _r filter
optional arguments:
--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')
--n_jobs N_JOBS
Number of threads (default: -1)
usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]
get_anomaly_reactions
Uploading anomaly reactions from messengers. It creates the following files:
- _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
optional arguments:
--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')
--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)
usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fink_anomaly_detection_model-0.4.20.tar.gz
.
File metadata
- Download URL: fink_anomaly_detection_model-0.4.20.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46a8cc917c3aa300e3f881ac955d96e16604b621cf601aba7f45528ded46f678 |
|
MD5 | b202dbfd34242b5d431c893c3735a5ba |
|
BLAKE2b-256 | 3105a02284519c3e9b920bc4123a5c39b3981a35d36ebdb78cda461dd19af665 |
File details
Details for the file fink_anomaly_detection_model-0.4.20-py3-none-any.whl
.
File metadata
- Download URL: fink_anomaly_detection_model-0.4.20-py3-none-any.whl
- Upload date:
- Size: 8.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6260f24f8a57943ef03eaf492a4a0ae2c49c4f698cc4b34f89be2cd18031aa2 |
|
MD5 | 6bcb3e5a0bf90c1b7ac4920b2cb6d0e2 |
|
BLAKE2b-256 | d23bbc4f059a251352d5876e9f4e7f2c40901224e4640e79bab2feb6746c3a84 |