Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.23.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.23.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.23.tar.gz
Algorithm Hash digest
SHA256 9170b222532d63184e2738839a44197122ab1cea72d51f06a1c708334bc0e37b
MD5 f5b03ffa08d6843a892cf7516c007607
BLAKE2b-256 173fb992ab870d655bcde3c9849d5198dc98c682b17fcbd4308f3eb9e8da9b54

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.23-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.23-py3-none-any.whl
Algorithm Hash digest
SHA256 917382cbec56c53e979087ef59ba8e18adc89cda63523f439c32ed21a8802d5c
MD5 8a652dff5735a3e6f44ee6c53a05df19
BLAKE2b-256 6e5d62a795171f02ea6b85d474ab9afe8a342272eabc73719b1b75c832bc212c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page