Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.24.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.24.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.24.tar.gz
Algorithm Hash digest
SHA256 d9f15a2d9e0a8f5710db2bd7184205bb5e54aa8571ac0805fd2185bc1eee0158
MD5 6dfc0964c91c99a8a313f355a537bd75
BLAKE2b-256 399df8130734bcc135b77c15f5bb863e1607b29bfb4a5209e888f74d4642e575

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.24-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.24-py3-none-any.whl
Algorithm Hash digest
SHA256 ec6e517e2edcb3c6c144b163d85244379b58effe0d1aa3e1d1f90d1d06635c1f
MD5 81bfe4fc5ac11c97d5b225780059c6f8
BLAKE2b-256 b2f96db4f7794dc4410539c2ee301bca27c790f1cd344719ddae2c047cc89f70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page