Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.26.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.26.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.26.tar.gz
Algorithm Hash digest
SHA256 2c8e1713a1287687a3008f33894cb801dcd369dc54324983c327840cf147573a
MD5 d5b0f1263240bd98d160beaa4bd44c0f
BLAKE2b-256 17e6f298a9bdc38125826f2ffe18d8dfac6cb2fcf7684892f1f54dfa6f2891c1

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.26-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.26-py3-none-any.whl
Algorithm Hash digest
SHA256 966f8ef62b34ca47aa8e173aa0baec6ff0dc7e25628c0e6bc1a4d1119b1cead8
MD5 8932cf05909b40a60f6404830f8b6165
BLAKE2b-256 2712263c64da0855a55ab2980b1ecd6ee1b98e6f1118656ae82fd6350a9dc0b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page