Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.27.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.27.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.27.tar.gz
Algorithm Hash digest
SHA256 a6a6334a917074ac5690ce1e25bee8ec79b0365cae4bb0c69b4c5c38df34de27
MD5 21fd5ecf538c0ae5eec5e04424e69d9e
BLAKE2b-256 c3aecb3322e02d0452b7b2ed4ea628cbc3a7e646facbc1dab8297bd8ebce033a

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.27-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.27-py3-none-any.whl
Algorithm Hash digest
SHA256 892f1d6128e7836ddf5af415d66da64d3f4b5c86eaab6d68487e805276e9fc11
MD5 4f65c0861bfc2f5f68d4f9ee96de25b7
BLAKE2b-256 2b2d092702d1ebfc175cf4e5255790694091caf0bec5960b7eb1d90905723bd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page