Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.30.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.30.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.30.tar.gz
Algorithm Hash digest
SHA256 e1a26912b6f9de3b129ccbd3404cc16532a9a96db364ff5db7e92c6cb7924985
MD5 f98847425f55b1f01b281ad67a244172
BLAKE2b-256 0ac9909d7724de068b6e50f95be91b4e5297fcd0a7056dbed968424223b8e2f5

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.30-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.30-py3-none-any.whl
Algorithm Hash digest
SHA256 4b3c01e46a6e505b494fb63c5f1f0eb47dd18f7033978a05e580d60e05d09314
MD5 d629d2e7326a3b1255d3d10f066e3ba4
BLAKE2b-256 53da1ce5fe7a4c39f9b683c07fcc22ef00720fe698e77fb67118335cc0c3c0be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page