Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.34.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.34.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.34.tar.gz
Algorithm Hash digest
SHA256 6d95512a5c44dd5acd7fb41da796b7b26072832945d84dbe4ada22a4c4880260
MD5 39132b9d6a516b7a013d69607b8aae49
BLAKE2b-256 46af0b98e29837e8b352796394893cb23c9c6587b629118e9e5bd7ff5bd5a212

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.34-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.34-py3-none-any.whl
Algorithm Hash digest
SHA256 741ac01546ab0574fb7466865705e346c6751a9b0b7fdde3e777d4003459dce7
MD5 ab09bdc8a4e89cf08088f9629b8e11db
BLAKE2b-256 91975bca19c25e000ac50c8983e0ab2f889560d18da515e9f072a871b4dbd64b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page