Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.35.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.35.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.35.tar.gz
Algorithm Hash digest
SHA256 29514b8e21a3578f9ca957802d297d5018e2bad7f01d678272c129b05da890dd
MD5 bd67c8efaaea2612db2b7d41c7d6f6dd
BLAKE2b-256 b51958727731efc488c2b46008ea5d6cdb69ee7cefc45162b69933dfe79bb8f3

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.35-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.35-py3-none-any.whl
Algorithm Hash digest
SHA256 82b865050b5fe4cd3b6d9f5554c47d7fbb80fb6f66014a54d47d682567b2e196
MD5 46d059425af8aa9edbfa632b91b27243
BLAKE2b-256 49154f47c71b45c86ac8264db45882d2115a602f8ce257412b2e00a9c19d9234

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page