Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.36.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.36.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.36.tar.gz
Algorithm Hash digest
SHA256 76aa7c442724802c55fe6467c2af1001c4bd930abb3cb2dd53f75dd444f14a5b
MD5 a7a4f54d4146a271a549714741b58d04
BLAKE2b-256 3f8bede5be5815a0c210cd8a8e07bb1d58a9aa155c67de0faddfcbfc837bd9f3

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.36-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.36-py3-none-any.whl
Algorithm Hash digest
SHA256 aafd7f51b9b542587f593225713c6849280148a6f0b28dbb9b83993ca36c0a5c
MD5 ed41750bf3cbe8287e3a9b83fd7e7799
BLAKE2b-256 d261d06d5592374e472f4d6103cd8de168846cfc3b50b9781ac690a7dbfb5b41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page