Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.38.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.38.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.38.tar.gz
Algorithm Hash digest
SHA256 aed4960b4287b27a0782e1cc488192ed63b5900cf98616c8cbd9c1798efc5171
MD5 f228e02ec46f4a2cb3e62cbdc72b6152
BLAKE2b-256 e6cc2de8727e45d0748dba14f2b5edf20ee8ea09921040b7ea0d24318f3a4826

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.38-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.38-py3-none-any.whl
Algorithm Hash digest
SHA256 2d3b5799db6972933973d71e9c494824594109cdc0f38dbc7a03b5d1499176cd
MD5 38fcc2cc37b4cfa7089d77998cdfa3f6
BLAKE2b-256 ad3fea8eeb6d5f2f4005ed8cbc8451fdd6436aa6b67ac976ed185c560e7d3a39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page