Skip to main content

Fink SNAD Anomaly Detection Model

Project description

Fink anomaly detection model

Здесь пока куча косяков, в обозримом будущем постараюсь их поправить

A set of modules for training models for finding anomalies in photometric data. There are currently two entry points via the console: fink_ad_model_train and get_anomaly_reactions.

fink_ad_model_train

The module trains the AADForest model using expert reactions from the C055ZJJ6N2AE channels in Slack and -1001898265997 in Telegram. It creates the following files:

  • _g_means.csv and _r_means.csv -- averages over the training dataset;
  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;
  • forest_g_AAD.onnx -- model for _g filter
  • forest_r_AAD.onnx -- model for _r filter

optional arguments:

--dataset_dir DATASET_DIR Input dir for dataset (default: './lc_features_20210617_photometry_corrected.parquet')

--n_jobs N_JOBS
Number of threads (default: -1)

usage: fink_ad_model_train [-h] [--dataset_dir DATASET_DIR] [--n_jobs N_JOBS]

get_anomaly_reactions

Uploading anomaly reactions from messengers. It creates the following files:

  • _reactions_g.csv and _reactions_r.csv -- training datasets for additional training of the AADForest algorithm, based on expert reactions from Slack and Telegram channels;

optional arguments:

--slack_channel SLACK_CHANNEL Slack Channel ID (default: 'C055ZJJ6N2AE')

--tg_channel TG_CHANNEL Telegram Channel ID (default: -1001898265997)

usage: get_anomaly_reactions [-h] [--slack_channel SLACK_CHANNEL] [--tg_channel TG_CHANNEL]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fink_anomaly_detection_model-0.4.41.tar.gz (8.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fink_anomaly_detection_model-0.4.41.tar.gz.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.41.tar.gz
Algorithm Hash digest
SHA256 2fd98f6afe55976afe68c562507e7f54d96cea8c7d898246061db5857fb1afaa
MD5 5342a871f48a3020cc16f2184d5a4c4d
BLAKE2b-256 2f90dd07d067fc781026faa6ee2c1957c85aed3c4a265cec79a024d0a9eb7fd6

See more details on using hashes here.

File details

Details for the file fink_anomaly_detection_model-0.4.41-py3-none-any.whl.

File metadata

File hashes

Hashes for fink_anomaly_detection_model-0.4.41-py3-none-any.whl
Algorithm Hash digest
SHA256 6c53a91b3318fc4ceba09261690c5cc404e8de648892faebdcc1db774aa5610c
MD5 e6bdf9cf0f5f878fe0aea1106fc4d75f
BLAKE2b-256 9c45bde5de678e6209c679b68352d75a99bcb5000b40cb48a05769a5f2885217

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page