Skip to main content

Analyzing stock has never been easier.

Project description

FinLab

瞬間的閃念之中,揭示過去十年2000支股票的歷史數據,這就是finlab package!不僅如此,它與pandas無縫整合,讓你在策略創建的旅程中,如同進行一場華麗的交響樂演奏。其語法之簡潔,讓你撰寫策略時有如神助。

你只需要撰寫人類懂得邏輯,而程式會自動融合各種頻率的歷史數據來選股,這不僅是程式設計上的巧思,更是對簡潔的極致追求。當你以為這已經是頂峰,它的詳細回測結果,又將你帶入更深一層的分析維度,每一筆數據都讓你的決策更加精準。 在幾秒鐘之內,2000支股票的回測,這速度,這效率,它不僅是一個 package,這是一個交易者的夢想加速器!這是finlab,一個為熱血操盤手量身打造的回測神器!

功能

  • 📊 快速存取龐大資料集:單一指令即可取得2000支股票過去十年的歷史數據。
  • 🐼 Pandas整合:利用熟悉且功能強大的pandas函式庫,輕鬆設計交易策略。
  • 🔍 用戶友好的語法✍️:採用簡潔直觀編碼語法。
  • 🕒 多頻率數據處理:自動整合管理不同時間頻率的歷史數據。
  • 🔬 全面的回測分析:透過詳細的回測報告,獲得深入的洞察。
  • 🚀 高速計算:得益於 Cython 優化的性能,幾秒鐘內即可執行2000支股票的回測。
  • 🤖 機器學習:結合 qlib 研發機器學習策略。

相關連結

簡易教學

下載資料

輸入以下程式碼,即可下載資料。可以查詢有哪些歷史資料可以下載。

from finlab import data

data.get('price:收盤價')
date 0015 0050 0051 0052 0053
2007-04-23 9.54 57.85 32.83 38.4 nan
2007-04-24 9.54 58.1 32.99 38.65 nan
2007-04-25 9.52 57.6 32.8 38.59 nan
2007-04-26 9.59 57.7 32.8 38.6 nan
2007-04-27 9.55 57.5 32.72 38.4 nan

撰寫策略

可以用非常簡單的 Pandas 語法來撰寫策略邏輯,以創新高的策略來說,可以用以下的寫法:

from finlab import data

close = data.get('price:收盤價')

# 創三百個交易日新高
position = close >= close.rolling(300).max()
position
date 0015 0050 0051 0052 0053
2007-04-23 00:00:00 False False False False False
2007-04-24 00:00:00 False False False False False
2007-04-25 00:00:00 False False False False False
2007-04-26 00:00:00 False False False True False
2007-04-27 00:00:00 False False False False False

這邊的 position 是一個 False/True 的查詢表,當數值為 True ,代表該股票在當天有創新高,而數字 False 則代表沒有創新高。由於創新高的股票很少,上面的範例中,只有少數股票的數值會是 True。

假設我們希望每個月底,搜尋上表中數值為 True 的股票並且買入持有一個月,可以用以下的語法:

回測績效

from finlab import backtest

report = backtest.sim(position, resample='M')
report.display()

image

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

finlab-1.2.16-cp312-cp312-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

finlab-1.2.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp312-cp312-macosx_10_13_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

finlab-1.2.16-cp312-cp312-macosx_10_13_universal2.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

finlab-1.2.16-cp311-cp311-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

finlab-1.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

finlab-1.2.16-cp311-cp311-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

finlab-1.2.16-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

finlab-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp310-cp310-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

finlab-1.2.16-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

finlab-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp39-cp39-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

finlab-1.2.16-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

finlab-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp38-cp38-macosx_10_9_universal2.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

finlab-1.2.16-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

finlab-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp37-cp37m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

finlab-1.2.16-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

finlab-1.2.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

finlab-1.2.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

finlab-1.2.16-cp36-cp36m-macosx_10_9_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file finlab-1.2.16-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dd4b87354b5b4f7f5ffbbeeb2cf5911d3b0746fdf3096826c6b2c7cd83e69dd0
MD5 31de3ea1e80508041aba8b358030db8b
BLAKE2b-256 03322444a2920f4273c1b557cf52f00adc4500d1af29cf96d0f0bbbba51eb55a

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1d8805f780904dd6c869f75a2aa93a64c313c324362d9b396af13ed0b22044c
MD5 058d6e61386585c1ceb543902854ac50
BLAKE2b-256 ea21315567c3e1ac0f0db400380ba433b0c90e1d512ce22c2ca34d4c013473f5

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98e6b349bec0a5d07bfc60d9bde42bd0d3f4b5ad7bd962db636b1d699d288e0d
MD5 4b52f69311fd8f297bf26d0ddc98d699
BLAKE2b-256 c3e0b5e770bd55f0ced41f6a1458412510d5ad3dd9f308b573dfd34945306f8b

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ef9c878d34eaa3bd7f97f19c4f65f1a4b8c23b67740bf7aef2b659e88ab99f3b
MD5 830202ff54f15750d18331b6dd937fab
BLAKE2b-256 368988b1b32c6ba702d4eab1dc257a17eb5c6d335ba44cdfcfac06e181ab83af

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 99db730c08aabbae3e9e18deed5430bf4f02716fb3fa6146196f4a075e684193
MD5 f6da236fa252bc3cf7b03ad7ada32408
BLAKE2b-256 8dfb7bc616691d448899402cda9720180a84ea52eb3e5428db6b537e55faf4e1

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b38ccf6ae7073c37fadb3a3f931c5cc0ffc33946f5ba6998a6c331ec7407c702
MD5 2671f98427c58265e040f3d685bab932
BLAKE2b-256 01fdc4a175877bbcbae30a1a0815922f3b2f27b932f614cf3413b921920495de

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f13dd9a3648995d70cb936158ae6f71b7b12738cf61adf464e0fd72770f892e4
MD5 c4f5fb4803033ac7dcfa89c5f42904e4
BLAKE2b-256 daaaf25ce118afaa5c1455d76b19a57c992e8880b171d84bad8851b430483c13

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bdadf3486d3619a630d098dd0d3f91c86ced293625e2f1680b49b51abb4cd64
MD5 1cc8a3930d3d0f868693ca076299d514
BLAKE2b-256 9afc03e579418d88b8dc312c8f235dea659c93d25467035072d0c666681202dd

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15c342099a3e09349b5032748f766b301b1f587d2416f625dddc378be2cf5d62
MD5 ccfaa63140fd205b020bcc4b2b924aa5
BLAKE2b-256 045095e5ad67988063238180ef45a589a6fbfe3681de6ba0a1a2abc8ea2200b2

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 56a4cdae79a9209c692d04155d7e7cd3b7a9508994ea20d81ad5761e54128edf
MD5 172da741cab906fc1cb7fcd64ddcfab4
BLAKE2b-256 8fa55189b359a501a2b0dc641485610a8f834a7d0416674e2e13e4f1fd4ef210

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3ac3b71513aa885d5d39e41fe663585d68f72bd022d2eeb587af1fedcdeeb3c6
MD5 610980d011d076fc2073c888b208f25d
BLAKE2b-256 e67c8ab90aed92ec8453e6311b670b222edbcbcfc447e1fdfc7cf911ec91e498

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a84582ebf17bd552010a4698a01a357875e42b8b0d08c5e4b2bce53e8a0c472b
MD5 75363bacc35738566c3f1bcdb5b6c7ae
BLAKE2b-256 4bfe71a59a5755e36fb45d247957e40d6a4f30c5a49135ea9bea81b6546faa27

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36a58ba6720538bfc84f5f5b0248d13429c94dd7beb28bedde3121384f402ca5
MD5 3c59982bba65717580e350c5617aff63
BLAKE2b-256 3a1490e323a1091e16ed705b4a95d6baf97846ca350c93dee4b444a4dd87de47

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d4837e509b713ecdf46d21528f3abaa86be4d3a37ca2037fc07b822eb996a0be
MD5 f5e416f8d235f5ae19da42f1b5a167bd
BLAKE2b-256 3b8a87713afe9e2f21ce558feac3dbf55b7fc858dbc5fd4f4b8f550a9bfa0812

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c1fe1baa1a2be67cae38ce19f1753e0344b8de24f43f22043a2b3d2aa1dccfa5
MD5 f8df57496adfe0d0e749aa385351978d
BLAKE2b-256 d16a7106b2b2c72c4d1298363789517e32dc4bb19e492032c168422a15f54230

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d982e72623c55226f28c042bdf2d85a358edc963f5af71cc9cf3a45a123a01e
MD5 7a410bea32e45749e3505a2ca1f820f9
BLAKE2b-256 275672e9106905ee361e64c50e5900b794d6ac2e774fa7f621bbbdac807d7256

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e0139230ee76412e23c2632b0ebae5cad2a75d17343e4fa5fa1149421798ef9
MD5 9e15cfa1dd9a6c166cb5e5fca67eafbc
BLAKE2b-256 f18447cbdca48f723f5e6e0114bdf6dd77b2b5e9c91e8c423823fa756b3fccfd

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ef8346db819c78fb93b79b8614a3e7ca2474a24912d4381cc65d5b66c2a433a1
MD5 96bd6bdb9713a900f4ab03c73a9ac010
BLAKE2b-256 a10b5f14a2f902e59cf275d00b54fb541751409e52729e3ab5f2b98af9156112

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dbc8b604ac3d8c6b4505979da6840eb719903d4ce5b534a4932309d93ac1d3a3
MD5 8d7864567a570493e9cdef3e65202c30
BLAKE2b-256 adb9ed4a57b2cced88f68635c5236eed4b1b718b3c5c561bd766e89ec9f205c0

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dd4c404865ad89641e1e5f607532cf99d31d2a2cdf1fa48639f07d0507b67ba
MD5 b9986bc22e6b68f91ee0226474c12a27
BLAKE2b-256 6a0c3ab69e320387726addaed32de3dd20898e96d9f0c0c26454b1638708c855

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0cdeaa80c80d5b088aa10d7ba5362dfe0a174f4cb2ee7bb277ed1fb638b4878
MD5 8aff218da1ed55ebbc03dc355a55f5c4
BLAKE2b-256 60abadf57060e220c283f4fcb53b6d30ffb449f2128f593e6bc2ea0a60fb060c

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e3619a875fcfac01b3a53477d93a1487964ef0a0067726bdeb872fe1f0630bd4
MD5 9ce345570f33034b786cafca19184f49
BLAKE2b-256 34c7c45200a3030226dd3082d9f41ff7ef8f8d8de16926bc77a5576484b8eadb

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a918bf7bb1db623132d1516e094700f16c6243ef649f640ff4ea2f888a19cd96
MD5 a11fcc0004950e9beedf5fbf088792e1
BLAKE2b-256 88712b480ee89343271533719dcd5ccd16500cf580a4c798b96e9526f118105c

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc08e11835dbc10a71489829b871a22e22b3ab05fbba1a0b461ad72dcbd05a2a
MD5 b75b90abd3f8dfe86628a09f74cf18b9
BLAKE2b-256 bdab09085cb4527ea6a3547bd7cb6919efca6365f094dab73d676760527c7c21

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d48311080490ecf310469b682204bdd40847e04fbca9d5e30fc9351d732eb558
MD5 2a9d8b0bea8c5d7c80a67e2ab6b6cad0
BLAKE2b-256 bbc853c18d3535d04d9ae6d09ffa2fdab961bf29be0bffd3aaeccd07d6c5585b

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 853cd849c756970d76140580aee7f774462e63dd8870a85fe6f56341e4c6337b
MD5 456bcaa1b604c1eb67f7e7e361bf9b6b
BLAKE2b-256 117f0a51bb14a423827fb0f103538358cc03df0d3bf96135e691b7d0434c6d34

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: finlab-1.2.16-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for finlab-1.2.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c10cdbe46680cff8d3da90d06d1ebf58ef965944757c8ee432a8310230929302
MD5 02c0f963e745c706790b7c2e7ca1fd99
BLAKE2b-256 4534d0cdbd7c3633da75154690867760a2bedfbb949d214059e5939b51d074c5

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d207f5b01ba8f0bd03b1789087a13eec3837e403d2811a906eb570ac3bf766a
MD5 f3f13ed3489de5a6fd2567d22fb7703e
BLAKE2b-256 33f97e99124cd1bf0680b6f5fa6ebb24592a651ed1f94903833748c20a879290

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79442cd1336ea81282a5539659ae1e16de50bd8a521c5ab73b49fb4666427f56
MD5 c7b32d4895ce203d445f8d95650d0715
BLAKE2b-256 f9fbd96001d276ea48a0c6fe8a06158a08c051496b5f73c3ea03225def4410bd

See more details on using hashes here.

File details

Details for the file finlab-1.2.16-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for finlab-1.2.16-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 127dc70680d9ee8d243cb51dd722260768bc41ff739ad72ca2007a8e5d853e89
MD5 0ae7d9aa03b5f05dfcb332d700b318cc
BLAKE2b-256 894bab3604bb7530ee6f055f0d574f0f27c2f4d95b6630751195147890159340

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page