Skip to main content

A plug-and-play Python library for data-driven OLPS research

Project description

FinOL: Towards Open Benchmarking for Data-Driven Online Portfolio Selection

 

Python 3.9 Platform License Document


FinOL represents a pioneering open database for facilitating data-driven financial research. As an ambitious project, it collects and organizes extensive assets from global markets over half a century, it provides a long-awaited unified platform to advance data-driven OLPS research.

:star: What's NEW!

Update Status
Release FinOL v0.0.1 Released v0.0.1 on 17 March 2024

Outline

About

Online portfolio selection (OLPS) is an important issue in operations research community that studies how to dynamically adjust portfolios according to market changes. In the past, OLPS research relied on a general database called OLPS containing price relatives data of financial assets across different markets. However, with the widespread adoption of data-driven technologies like machine learning in finance, OLPS can no longer meet the needs of OLPS research because due to the lack of support for high-dimensional feature spaces. To solve this problem, we propose FinOL, an open finance platform for advancing research in data-driven OLPS. FinOL expands and enriches the previous OLPS database, containing 9 benchmark financial datasets from 1962 to present across global markets. To promote fair comparisons, we evaluate a large number of past classic OLPS methods on FinOL, providing reusable benchmark results for future FinOL users and effectively supporting OLPS research. More importantly, to lower the barriers to research, FinOL provides a complete data-training-testing suite with just three lines of command. We are also committed to regularly updating FinOL with new data and benchmark results reflecting the latest developments and trends in the field. This ensures FinOL remains a valuable resource as data-driven OLPS methods continue evolving.

image

Why should I use FinOL?

  1. FinOL contributes comprehensive datasets spanning diverse market conditions and asset classes to enable large-scale empirical validation;
  2. FinOL contributes the most extensive benchmark results to date for portfolio selection methods, providing the academic community an unbiased performance assessment;
  3. FinOL contributes a user-friendly Python library for data-driven OLPS research, providing a comprehensive toolkit for academics to develop, test, and validate new OLPS methods.

Contact Us

For inquiries, please get in touch with us at finol.official@gmail.com (Monday to Friday, 9:00 AM to 6:00 PM)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

finol-0.0.2.tar.gz (32.3 kB view details)

Uploaded Source

File details

Details for the file finol-0.0.2.tar.gz.

File metadata

  • Download URL: finol-0.0.2.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for finol-0.0.2.tar.gz
Algorithm Hash digest
SHA256 b5fc0453e276f3ad282b1ed100c5c2ce9a9a6ce50a100dbcbc3bd40d99bdbae4
MD5 3d392b37565c768536254c862dc08ac9
BLAKE2b-256 76dd1c7e16b9ca937d6f1dd677dfabe20c5273ab17be9672cb050ef1c043a893

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page