Financial Python. Using python to do stock analysis.
Project description
finpy
Financial Python
To install
Requirement: Python 3
pip install finpy
You can also download the window install package if you're using windows. Introduction
I plan to expand the capabilities. Please let me know if you have any suggestions. You can reach me at blacksburg98 (at) yahoo dot com
I've tried to use docstring as much as possible, so you can try these commands in python shell to get more information.
:: from finpy.utils import get_tickdata from finpy.equity import Equity help(Equity) from finpy.portfolio import Portfolio help(Portfolio)
Please go to https://github.com/blacksburg98/finpy to file a issue if you have any problems.
Recommend: This will be the area where the downloaded stock data are stored.
setenv FINPYDATA ~/stock_data
Tutorial 1
::
"""
Tutorial 1
Load stock data and print
"""
import matplotlib
matplotlib.use('Agg') # fix for matplotlib under multiprocessing
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime as dt
from finpy.utils import get_tickdata
import finpy.fpdateutil as du
if __name__ == '__main__':
dt_timeofday = dt.timedelta(hours=16)
dt_start = dt.datetime(2010, 1, 1)
dt_end = dt.datetime(2010, 12, 31)
ls_symbols = ['AAPL','GOOG', 'IBM', 'MSFT']
ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt_timeofday)
all_stocks = get_tickdata(ls_symbols=ls_symbols, ldt_timestamps=ldt_timestamps)
fig = plt.figure()
ax = fig.add_subplot(111)
for tick in ls_symbols:
ax.plot(ldt_timestamps, all_stocks[tick].normalized())
legend = ls_symbols
ax.legend(legend, loc=2)
fig.autofmt_xdate()
svg_file = 'tutorial1.pdf'
fig.savefig(svg_file)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file FinPy-0.61.tar.gz
.
File metadata
- Download URL: FinPy-0.61.tar.gz
- Upload date:
- Size: 71.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 388172dae02c069ac308887cf360915e6b82c8d4a61145e02599b1ca91b1aa6a |
|
MD5 | b0c8a3f4f37706f38485a967d4002368 |
|
BLAKE2b-256 | f2bd29d2a4461fd69c0f65fc50fc0a3ccee493e8a0255acb10bc92a97c34cfd4 |