Python interface to FINUFFT
Project description
Flatiron Institute Nonuniform Fast Fourier Transform library: FINUFFT
Principal author Alex H. Barnett, main co-developers Jeremy F. Magland, Ludvig af Klinteberg, Yu-hsuan "Melody" Shih, Andrea Malleo, Libin Lu, and Joakim Andén.
This package provides a Python interface to the library, enabling fast computation of nonuniform discrete Fourier transforms to specified precision in one, two, and three dimensions. It supports transforms of type 1 (nonuniform to uniform), type 2 (uniform to nonuniform) and type 3 (nonuniform to nonuniform). For more information, see the online documentation.
If you find FINUFFT useful in your work, please cite this package and our paper:
A parallel non-uniform fast Fourier transform library based on an ``exponential of semicircle'' kernel.
A. H. Barnett, J. F. Magland, and L. af Klinteberg.
SIAM J. Sci. Comput. 41(5), C479–C504 (2019).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for finufft-2.0.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88b258ab7fe910ed2daabd1d8cb52698cfeb5ea1ad743bd5181ca69aca799a3f |
|
MD5 | eec19e50ae8f6b9089e28e62cd64ac5d |
|
BLAKE2b-256 | fd7407fdc198a3d9d6166ad924a49b7c8bf6d91dc7c5c165c06f24927e5d3302 |
Hashes for finufft-2.0.4-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87c2c72cad971a7844f839ad915a894d1393a7082940e3a6a734ce86e5be4afa |
|
MD5 | 7d000316cad5a127e3ca4d603ecbf0b6 |
|
BLAKE2b-256 | 50c2d266cb292711afa4c2c35363af3f55215eccf9cf908ee7ec652c1aa52e48 |
Hashes for finufft-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | debeffc7a4d5e878bb95083dbf20d86395cfd0b49eba04c4fb46986caef06ac9 |
|
MD5 | e471a0820067277db8c70a97fde6891d |
|
BLAKE2b-256 | 8edb7ff0f571e1e312b440e2180dccbe23c8eef1de138c88ea62db024a90dc11 |
Hashes for finufft-2.0.4-cp310-cp310-macosx_10_15_universal2.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef6ce8079179fcf0e6f066c37f0e2793947f0b75646d55fb7f075568e961be5d |
|
MD5 | 4b14dc21837a5bd2302a72e52ed5d9ff |
|
BLAKE2b-256 | 2e37c0b7446dc6d3d5bcfa1237f55a737a7018c33db5a2b1a33683192d326ed5 |
Hashes for finufft-2.0.4-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fc312fedbb41b245114b9d87a2a8ac47137190dc8985ad37f59b776d79ca7a5 |
|
MD5 | f629dd58ab8f0f398ebd6062d2576b5d |
|
BLAKE2b-256 | e52728ed33d5720d836c2724ff25bd69095ab86b8d0048b33906a744857b6c11 |
Hashes for finufft-2.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81b57f24ac3ce8387a8b9012fa685c1822cee25ead397f70df6b2b87504e21f9 |
|
MD5 | 9aed849bd6d337e672bda4583644db70 |
|
BLAKE2b-256 | 9b91d1edf50ee035743370a6764dff482c8af02d759a031f8aacafdf2db09d3e |
Hashes for finufft-2.0.4-cp39-cp39-macosx_10_15_universal2.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73d147b4b9487d03bb699a468d7fd9c815288d26b85b646b26f6120ad7fe00cc |
|
MD5 | a8f2c9d5cd103aaab1cec1deec012ad6 |
|
BLAKE2b-256 | 1e423fb6c8ab72bc82dcc4f0aa8df97a26d023eccf6f6482d70ef26b97dae174 |
Hashes for finufft-2.0.4-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60d7fc559fdf73b9ac4026e0acfe86a664b29356b0b6b54c4904c1e710224399 |
|
MD5 | aef7c715a102354a2f033655a33095b0 |
|
BLAKE2b-256 | 719a762553fd1782cae797718f27e797624d4adb9570b6fb44f43982eda055c8 |
Hashes for finufft-2.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 162778b330c0fc1d50e15b5fa6f3985d0ac313215bf16d1e40cb10500ba476b8 |
|
MD5 | cf14cd182a6a8c55fdbad956d6a90868 |
|
BLAKE2b-256 | 2db39e48d6e57cd263a395b5a040e21fa22e460cbe4f328d898a5fb99329fe37 |
Hashes for finufft-2.0.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fdf570aeb5c41db3854407bf1aaf24277136ebd1cc829cd51be9b0f1fa53d06a |
|
MD5 | 3fe8db9fc45caf6a0b67a23d2808c1b7 |
|
BLAKE2b-256 | 80fbdc957d7dcb307419b0475c5b74c2ef35b4e3179a90fb040e90e908dd0308 |
Hashes for finufft-2.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8189132d64c31979823c39afa1221adbc8a585fcf935ca8028e93b4688ee2bd9 |
|
MD5 | 84f1a6bd54b48e815c17d6ae3e8ac59c |
|
BLAKE2b-256 | a0f2daf79e5db65ac5c268cc6d16c93bea8961c39aafeb03b1a8a42f79c7ace6 |
Hashes for finufft-2.0.4-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6f23a537025a270d377aed6bace9be124631e06b39134601adcd486da4b6d6d |
|
MD5 | 4241cb94c4b22005ed162b5a21cd267d |
|
BLAKE2b-256 | 9ed520e7b35b34eb9bbb330b400ddb951bc01eef732a4562fd4de91743131ca2 |
Hashes for finufft-2.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98215d6464205a89e297feda2d4cc5a8c7d82dda74c745f62c4f5a884587d5be |
|
MD5 | 0eefaf7c168edc66fbf37d97edb14157 |
|
BLAKE2b-256 | 29603e111509eca0830b5fde8bef61a8f97de4afe3138c44ea2fdd734e9f62da |
Hashes for finufft-2.0.4-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4787fd637d2ad2519f437e0c8d6c62df6c40055b0e5d6d8ed486533def1c86cc |
|
MD5 | e8d09f1bd03e003272301e623c925aaf |
|
BLAKE2b-256 | 5290e110f699459f525a207d9482252e86cda2b2054f1f4d5b859233501b2f02 |