Skip to main content

Weather Analysis and Forecasting For Fire Weather

Project description

FireWxPy

Thank you for checking out FireWxPy! A user friendly Python package to create visualizations of data specific to fire weather and fire weather forecasting.

This repository consists of functions to make plots of weather data with an emphasis on fire weather.

This open source project will help meteorologists download, sort and plot both analysis and forecast data.

This package focuses on fire weather, however some modules will be universally useful across the entire field of meteorology.

This package makes it easier for users to access and parse through the 2.5km × 2.5km Real Time Mesoscale Analysis data from the UCAR THREDDS server.

This package makes it easier for users to access and parse through the National Weather Service NDFD gridded forecast data.

This package makes it easier for users to automate their weather graphics since the plotting functions of FireWxPy handle different run times so users will be able to automate their scripts in either the Windows Task Scheduler or a Cron Job.

Copyright (C) Meteorologist Eric J. Drewitz 2024

Inspiration

This package is largely inspired by the MetPy package which was developed and is currently being maintained by Unidata (please see citation below in the citations section).

Python Module Dependencies

  1. PyGrib
  2. Xarray
  3. os
  4. ftplib
  5. MetPy
  6. Siphon
  7. NumPy
  8. cartopy
  9. Pandas

FireWxPy Documentation

https://github.com/edrewitz/FireWxPy/blob/main/FireWxPy_docs.md

Author

Eric J. Drewitz

USDA/USFS Meteorologist

Southern California Geographic Area Coordination Center

Citations

MetPy: May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T., 2022: MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Amer. Meteor. Soc., 103, E2273-E2284, https://doi.org/10.1175/BAMS-D-21-0125.1.

xarray: Hoyer, S., Hamman, J. (In revision). Xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software.

pygrib: Jeff Whitaker, daryl herzmann, Eric Engle, Josef Kemetmüller, Hugo van Kemenade, Martin Zackrisson, Jos de Kloe, Hrobjartur Thorsteinsson, Ryan May, Benjamin R. J. Schwedler, OKAMURA Kazuhide, ME-Mark-O, Mike Romberg, Ryan Grout, Tim Hopper, asellappenIBM, Hiroaki Itoh, Magnus Hagdorn, & Filipe. (2021). jswhit/pygrib: version 2.1.4 release (v2.1.4rel). Zenodo. https://doi.org/10.5281/zenodo.5514317

siphon: May, R. M., Arms, S. C., Leeman, J. R., and Chastang, J., 2017: Siphon: A collection of Python Utilities for Accessing Remote Atmospheric and Oceanic Datasets. Unidata, Accessed 30 September 2017. [Available online at https://github.com/Unidata/siphon.] doi:10.5065/D6CN72NW.

cartopy: Phil Elson, Elliott Sales de Andrade, Greg Lucas, Ryan May, Richard Hattersley, Ed Campbell, Andrew Dawson, Bill Little, Stephane Raynaud, scmc72, Alan D. Snow, Ruth Comer, Kevin Donkers, Byron Blay, Peter Killick, Nat Wilson, Patrick Peglar, lgolston, lbdreyer, … Chris Havlin. (2023). SciTools/cartopy: v0.22.0 (v0.22.0). Zenodo. https://doi.org/10.5281/zenodo.8216315

NumPy: Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

firewxpy-1.0.0.6.77.tar.gz (196.4 kB view details)

Uploaded Source

File details

Details for the file firewxpy-1.0.0.6.77.tar.gz.

File metadata

  • Download URL: firewxpy-1.0.0.6.77.tar.gz
  • Upload date:
  • Size: 196.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for firewxpy-1.0.0.6.77.tar.gz
Algorithm Hash digest
SHA256 2f963411ceb54e76a5a6e794ce4b1ec64ea195ecf178505aa7f5a69d6972fcb7
MD5 b416f9d0bd9de616ab0a2c08d14c0955
BLAKE2b-256 2e30f2e6907309b815f14b2a76d104ce79ae1ca879ad400886fdebe8f61ad84f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page