Skip to main content

A Python library to extract FitBit Google Takeout data.

Project description

pyFitOut

GitHub license PyPI - Python Version semver GitHub tag (latest SemVer) Code style: autopep8

The pyFitOut project is an open source Python library for extracting FitBit data from Google Takeout.

Installation

Use pip to install:

pip install fitout

Example

How to use pyFitOut:

Export

Export your FitBit data, using Google Takeout.

Note: Currently only export to zip is supported, and the zip files must be extracted to your local drive.

Once the export is complete, download the zip file and extract it. I use C:\Dev\Fitbit\Google\Takeout. This directory is the takeout_dir.

Trivial Example

import fitout as fo
from datetime import date

def main():
    # Specify the location where the Takeout zip files was extracted
    takeout_dir = "C:\Dev\Fitbit\Google\Takeout"
    # Use the NativeFileLoader to load the data from the extracted files
    data_source = fo.NativeFileLoader(takeout_dir)

    # Specify the desired date range.
    start_date = date(2024, 10, 1)
    end_date = date(2024, 11, 5)

    # Generate a list of dates for the date range, for informational or plotting purposes.
    dates = fo.dates_array(start_date, end_date)
    print("Dates:", dates)

    # Create the breathing rate importer and fetch the data.
    breather_importer = fo.BreathingRate(data_source, 1)
    breathing_data = breather_importer.get_data(start_date, end_date)
    print("Breathing rate:", breathing_data)

    # Create the heart rate variability importer and fetch the data.
    hrv_importer = fo.HeartRateVariability(data_source)
    hrv_data = hrv_importer.get_data(start_date, end_date)
    print("HRV:", hrv_data)

    # Create the resting heart rate importer and fetch the data.
    rhr_importer = fo.RestingHeartRate(data_source)
    rhr_data = rhr_importer.get_data(start_date, end_date)
    print("RHR:", rhr_data)


if __name__ == "__main__":
    main()

Plotting Example with Numpy and Matplotlib

from datetime import date
import numpy as np
import matplotlib.pyplot as plt
import fitout as fo

def main():
    # Specify the location where the Takeout zip files was extracted
    takeout_dir = "C:\Dev\Fitbit\Google\Takeout"
    # Use the NativeFileLoader to load the data from the extracted files
    data_source = fo.NativeFileLoader(takeout_dir)

    # Specify the desired date range.
    start_date = date(2024, 10, 1)
    end_date = date(2024, 10, 31)

    # Generate a list of dates for the date range, for informational or plotting purposes.
    dates = fo.dates_array(start_date, end_date)

    # Create the breathing rate importer and fetch the data.
    breather_importer = fo.BreathingRate(data_source, 1)
    breathing_data = breather_importer.get_data(start_date, end_date)

    # Create the heart rate variability importer and fetch the data.
    hrv_importer = fo.HeartRateVariability(data_source)
    hrv_data = hrv_importer.get_data(start_date, end_date)

    # Create the resting heart rate importer and fetch the data.
    rhr_importer = fo.RestingHeartRate(data_source)
    rhr_data = rhr_importer.get_data(start_date, end_date)

    # Fill in missing values with the mean of the neighbouring values
    breathing_data = fo.fill_missing_with_neighbours(breathing_data)
    hrv_data = fo.fill_missing_with_neighbours(hrv_data)
    rhr_data = fo.fill_missing_with_neighbours(rhr_data)

    # Adjust buggy data (typically values that are too high or too low) to the mean of the neighbouring values
    # These values depend on your personal ranges.
    breathing_data = fo.fix_invalid_data_points(breathing_data, 10, 20)
    hrv_data = fo.fix_invalid_data_points(hrv_data, 20, 50)
    rhr_data = fo.fix_invalid_data_points(rhr_data, 46, 54)

    # Convert lists to numpy arrays
    dates_array = np.asarray(dates)
    breathing_data_array = np.array(breathing_data).astype(float)
    hrv_data_array = np.array(hrv_data).astype(float)
    rhr_data_array = np.array(rhr_data).astype(float)

    #print("Dates array:", dates_array)
    #print("Breathing data array:", breathing_data_array)
    #print("HRV data array:", hrv_data_array)
    #print("RHR data array:", rhr_data_array)

    # Create a combined calmness index as follows: 100-(RHR/2 + breathing rate*2 - HRV)
    calmness_index = 100 - (rhr_data_array / 2. + breathing_data_array * 2. - hrv_data_array)
    #print("Calmness index:", calmness_index)

    # Plot the calmness index
    plt.figure(figsize=(10, 6))
    plt.plot(dates_array, calmness_index, marker='o', linestyle='-', color='b')
    plt.xlabel('Date')
    plt.ylabel('Calmness Index')
    plt.title('Calmness Index Over Time')
    plt.grid(True)
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    # Fit a 4th order polynomial to the calmness index data
    dates_axis = np.arange(len(dates_array))
    polynomial_coefficients = np.polyfit(dates_axis, calmness_index, 4)
    polynomial = np.poly1d(polynomial_coefficients)
    fitted_calmness_index = polynomial(dates_axis)

    # Plot the fitted polynomial
    plt.plot(dates_array, fitted_calmness_index, linestyle='--', color='r', label='4th Order Polynomial Fit')
    plt.legend()

    plt.show()
if __name__ == "__main__":
    main()

More Examples

For more examples, see the examples directory.

Contributing

If you'd like to contribute to pyFitOut, follow the guidelines outlined in the Contributing Guide.

License

See LICENSE.txt for more information.

Contact

For inquiries and discussion, use pyFitOut Discussions.

Issues

For issues related to this Python implementation, visit the Issues page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fitout-0.0.7.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

fitout-0.0.7-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file fitout-0.0.7.tar.gz.

File metadata

  • Download URL: fitout-0.0.7.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for fitout-0.0.7.tar.gz
Algorithm Hash digest
SHA256 fa831cdfe51bfb3fd4f0358540cb090a9cc0d668773b5cd42c0fa91472b5fe77
MD5 42ff7863beed11a195740a2a6a953df5
BLAKE2b-256 ca62165af7537108ce94d700a8f1908bb9cae8796693069bc0c47e6b6c64c675

See more details on using hashes here.

File details

Details for the file fitout-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: fitout-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for fitout-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 a9f90a31de782845052d756ba18f6318a73931d6c3068db1ba772d50e708c8fe
MD5 aa8f53c0c15c9a47f00e5697046e7a9a
BLAKE2b-256 737a72b2146d55f08d31884503059b938cbbd3dc39edadf882868c046bcd866c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page