A Python library to extract FitBit Google Takeout data.
Project description
pyFitOut
The pyFitOut project is an open source Python library for extracting FitBit data from Google Takeout.
Installation
Use pip to install:
pip install fitout
Example
How to use pyFitOut:
Export
Export your FitBit data, using Google Takeout.
Note: Currently only export to zip is supported, and the zip files must be extracted to your local drive.
Once the export is complete, download the zip file and extract it. I use C:\Dev\Fitbit\Google\Takeout
.
This directory is the takeout_dir
.
Trivial Example
import fitout as fo
from datetime import date
def main():
# Specify the location where the Takeout zip files was extracted
takeout_dir = "C:\Dev\Fitbit\Google\Takeout"
# Use the NativeFileLoader to load the data from the extracted files
data_source = fo.NativeFileLoader(takeout_dir)
# Specify the desired date range.
start_date = date(2024, 10, 1)
end_date = date(2024, 11, 5)
# Generate a list of dates for the date range, for informational or plotting purposes.
dates = fo.dates_array(start_date, end_date)
print("Dates:", dates)
# Create the breathing rate importer and fetch the data.
breather_importer = fo.BreathingRate(data_source, 1)
breathing_data = breather_importer.get_data(start_date, end_date)
print("Breathing rate:", breathing_data)
# Create the heart rate variability importer and fetch the data.
hrv_importer = fo.HeartRateVariability(data_source)
hrv_data = hrv_importer.get_data(start_date, end_date)
print("HRV:", hrv_data)
# Create the resting heart rate importer and fetch the data.
rhr_importer = fo.RestingHeartRate(data_source)
rhr_data = rhr_importer.get_data(start_date, end_date)
print("RHR:", rhr_data)
if __name__ == "__main__":
main()
Plotting Example with Numpy and Matplotlib
from datetime import date
import numpy as np
import matplotlib.pyplot as plt
import fitout as fo
def main():
# Specify the location where the Takeout zip files was extracted
takeout_dir = "C:\Dev\Fitbit\Google\Takeout"
# Use the NativeFileLoader to load the data from the extracted files
data_source = fo.NativeFileLoader(takeout_dir)
# Specify the desired date range.
start_date = date(2024, 10, 1)
end_date = date(2024, 10, 31)
# Generate a list of dates for the date range, for informational or plotting purposes.
dates = fo.dates_array(start_date, end_date)
# Create the breathing rate importer and fetch the data.
breather_importer = fo.BreathingRate(data_source, 1)
breathing_data = breather_importer.get_data(start_date, end_date)
# Create the heart rate variability importer and fetch the data.
hrv_importer = fo.HeartRateVariability(data_source)
hrv_data = hrv_importer.get_data(start_date, end_date)
# Create the resting heart rate importer and fetch the data.
rhr_importer = fo.RestingHeartRate(data_source)
rhr_data = rhr_importer.get_data(start_date, end_date)
# Fill in missing values with the mean of the neighbouring values
breathing_data = fo.fill_missing_with_neighbours(breathing_data)
hrv_data = fo.fill_missing_with_neighbours(hrv_data)
rhr_data = fo.fill_missing_with_neighbours(rhr_data)
# Adjust buggy data (typically values that are too high or too low) to the mean of the neighbouring values
# These values depend on your personal ranges.
breathing_data = fo.fix_invalid_data_points(breathing_data, 10, 20)
hrv_data = fo.fix_invalid_data_points(hrv_data, 20, 50)
rhr_data = fo.fix_invalid_data_points(rhr_data, 46, 54)
# Convert lists to numpy arrays
dates_array = np.asarray(dates)
breathing_data_array = np.array(breathing_data).astype(float)
hrv_data_array = np.array(hrv_data).astype(float)
rhr_data_array = np.array(rhr_data).astype(float)
#print("Dates array:", dates_array)
#print("Breathing data array:", breathing_data_array)
#print("HRV data array:", hrv_data_array)
#print("RHR data array:", rhr_data_array)
# Create a combined calmness index as follows: 100-(RHR/2 + breathing rate*2 - HRV)
calmness_index = 100 - (rhr_data_array / 2. + breathing_data_array * 2. - hrv_data_array)
#print("Calmness index:", calmness_index)
# Plot the calmness index
plt.figure(figsize=(10, 6))
plt.plot(dates_array, calmness_index, marker='o', linestyle='-', color='b')
plt.xlabel('Date')
plt.ylabel('Calmness Index')
plt.title('Calmness Index Over Time')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
# Fit a 4th order polynomial to the calmness index data
dates_axis = np.arange(len(dates_array))
polynomial_coefficients = np.polyfit(dates_axis, calmness_index, 4)
polynomial = np.poly1d(polynomial_coefficients)
fitted_calmness_index = polynomial(dates_axis)
# Plot the fitted polynomial
plt.plot(dates_array, fitted_calmness_index, linestyle='--', color='r', label='4th Order Polynomial Fit')
plt.legend()
plt.show()
if __name__ == "__main__":
main()
More Examples
For more examples, see the examples directory.
Contributing
If you'd like to contribute to pyFitOut, follow the guidelines outlined in the Contributing Guide.
License
See LICENSE.txt
for more information.
Contact
For inquiries and discussion, use pyFitOut Discussions.
Issues
For issues related to this Python implementation, visit the Issues page.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fitout-0.0.8.tar.gz
.
File metadata
- Download URL: fitout-0.0.8.tar.gz
- Upload date:
- Size: 20.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78e8243ef9031849a46152caeb3fc56d1fdaff952c6ab66c756edee79b945a51 |
|
MD5 | 5379ed63523add233f10b5eac03e2c6e |
|
BLAKE2b-256 | 1587482cb818d06093bfacc25f8c7ce5fbcbd398ab036d55b830780f40a2425a |
Provenance
The following attestation bundles were made for fitout-0.0.8.tar.gz
:
Publisher:
python-publish.yml
on kev-m/pyFitOut
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
fitout-0.0.8.tar.gz
- Subject digest:
78e8243ef9031849a46152caeb3fc56d1fdaff952c6ab66c756edee79b945a51
- Sigstore transparency entry: 149107232
- Sigstore integration time:
- Predicate type:
File details
Details for the file fitout-0.0.8-py3-none-any.whl
.
File metadata
- Download URL: fitout-0.0.8-py3-none-any.whl
- Upload date:
- Size: 14.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ae3ae5f1946b8096317534a2c9fd50facf9bcd314aab72e37533105383528bc |
|
MD5 | 3f7aa465c05e241c7e3fac47fdd67288 |
|
BLAKE2b-256 | 3bfe512471906599dcc71cc8673f3fc187f968106ccee1ed54ea1184c058b950 |
Provenance
The following attestation bundles were made for fitout-0.0.8-py3-none-any.whl
:
Publisher:
python-publish.yml
on kev-m/pyFitOut
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
fitout-0.0.8-py3-none-any.whl
- Subject digest:
6ae3ae5f1946b8096317534a2c9fd50facf9bcd314aab72e37533105383528bc
- Sigstore transparency entry: 149107233
- Sigstore integration time:
- Predicate type: