Skip to main content

A least-squares offline method to test if tracked gaze points resemble a fixation

Project description

A least-squares offline method to test if tracked gaze points resemble a fixation.

1. Install

With pip:

$ pip install fixationmodel

2. Usage

A data structure we call pointlist is used for point sequences. It is a list of points, where each point is a list [x, y].

The usage is simple:

>>> import fixationmodel
>>> rawdata = [
    [130.012, 404.231],
    [129.234, 403.478],
    [None, None],
    [133.983, 450.044],
    ...
]
>>> results = fixationmodel.fit(rawdata)
>>> print(results)
{
    'centroid': [344.682, 200.115],
    'mean_squared_error': 0.000166802
}

3. API

3.1. fixationmodel.fit(gazepointlist)

Parameter:

  • gazepointlist: a list of [x, y] points i.e. a list of lists.

Return dict with following keys:

  • centroid: a list [x, y], the most probable target of the fixation

  • mean_squared_error: the average squared error for a point.

3.2. fixationmodel.version

Gives the current version string:

>>> fixationmodel.version
'1.2.3'

4. For developers

4.1. Virtualenv

Use virtualenv:

$ virtualenv -p python3.5 fixationmodel-py
$ cd fixationmodel-py
$ source bin/activate
...
$ deactivate

4.2. Testing

Follow instructions to install pyenv and then either run quick tests:

$ python3.5 setup.py test

or comprehensive tests for multiple Python versions in tox.ini:

$ pyenv local 2.6.9 2.7.10 3.2.6 3.3.6 3.4.3 3.5.0
$ eval "$(pyenv init -)"
$ pyenv rehash
$ tox

4.3. Publishing to PyPI

Follow python packaging instructions:

  1. Create an unpacked sdist: $ python setup.py sdist

  2. Create a universal wheel: $ python setup.py bdist_wheel --universal

  3. Go to PyPI and register the project by filling the package form by uploading fixationmodel.egg-info/PKG_INFO file.

  4. Upload the package with twine:

    1. Sign the dist: $ gpg --detach-sign -a dist/fixa...0.1.2*

    2. Upload: twine upload dist/fixa...0.1.2* (will ask your PyPI password)

  5. Package published!

Updating the package takes same steps except the 3rd.

5. Versioning

Semantic Versioning 2.0.0

6. License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fixationmodel-0.1.3.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

fixationmodel-0.1.3-py2.py3-none-any.whl (5.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file fixationmodel-0.1.3.tar.gz.

File metadata

File hashes

Hashes for fixationmodel-0.1.3.tar.gz
Algorithm Hash digest
SHA256 37ef50093d306a43c222d8a17d0ff04a0d0e7de2e503185de80fb57e750b4ea3
MD5 390b6ef166fafa5e1a595898abe52a03
BLAKE2b-256 f4c481d34e30f3a69f2612749d021590318cf3b487fc8626aa59f8ef74df3b27

See more details on using hashes here.

File details

Details for the file fixationmodel-0.1.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for fixationmodel-0.1.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 8d8b1fc86c2c14271229ef1777cd48885c03e4057326fb3ad261a62fe1902971
MD5 e9bf566ff452a2ef3554c66e8fce1334
BLAKE2b-256 84392507a65d8ed5f26d3757b73d43fd45535abec8b09ab031e78e33cf608c31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page