A least-squares offline method to test if tracked gaze points resemble a fixation
Project description
A least-squares offline method to test if tracked gaze points resemble a fixation.
1. Install
With pip:
$ pip install fixationmodel
2. Usage
A data structure we call pointlist is used for point sequences. It is a list of points, where each point is a list [x, y].
The usage is simple:
>>> import fixationmodel >>> rawdata = [ [130.012, 404.231], [129.234, 403.478], [None, None], [133.983, 450.044], ... ] >>> results = fixationmodel.fit(rawdata) >>> print(results) { 'centroid': [344.682, 200.115], 'mean_squared_error': 0.000166802 }
3. API
3.1. fixationmodel.fit(gazepointlist)
Parameter:
gazepointlist: a list of [x, y] points i.e. a list of lists.
Return dict with following keys:
centroid: a list [x, y], the most probable target of the fixation
mean_squared_error: the average squared error for a point.
3.2. fixationmodel.version
Gives the current version string:
>>> fixationmodel.version '1.2.3'
4. For developers
4.1. Virtualenv
Use virtualenv:
$ virtualenv -p python3.5 fixationmodel-py $ cd fixationmodel-py $ source bin/activate ... $ deactivate
4.2. Testing
Follow instructions to install pyenv and then either run quick tests:
$ python3.5 setup.py test
or comprehensive tests for multiple Python versions in tox.ini:
$ pyenv local 2.6.9 2.7.10 3.2.6 3.3.6 3.4.3 3.5.0 $ eval "$(pyenv init -)" $ pyenv rehash $ tox
4.3. Publishing to PyPI
Follow python packaging instructions:
Create an unpacked sdist: $ python setup.py sdist
Create a universal wheel: $ python setup.py bdist_wheel --universal
Go to PyPI and register the project by filling the package form by uploading fixationmodel.egg-info/PKG_INFO file.
Upload the package with twine:
Sign the dist: $ gpg --detach-sign -a dist/fixa...0.1.2*
Upload: twine upload dist/fixa...0.1.2* (will ask your PyPI password)
Package published!
Updating the package takes same steps except the 3rd.
5. Versioning
6. License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fixationmodel-0.1.3.tar.gz
.
File metadata
- Download URL: fixationmodel-0.1.3.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37ef50093d306a43c222d8a17d0ff04a0d0e7de2e503185de80fb57e750b4ea3 |
|
MD5 | 390b6ef166fafa5e1a595898abe52a03 |
|
BLAKE2b-256 | f4c481d34e30f3a69f2612749d021590318cf3b487fc8626aa59f8ef74df3b27 |
File details
Details for the file fixationmodel-0.1.3-py2.py3-none-any.whl
.
File metadata
- Download URL: fixationmodel-0.1.3-py2.py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d8b1fc86c2c14271229ef1777cd48885c03e4057326fb3ad261a62fe1902971 |
|
MD5 | e9bf566ff452a2ef3554c66e8fce1334 |
|
BLAKE2b-256 | 84392507a65d8ed5f26d3757b73d43fd45535abec8b09ab031e78e33cf608c31 |