Skip to main content

A python package for Fuzzy-k-Centers algorithm

Project description

Python implementations of the FuzzykCenters algorithms for fuzzy clustering categorical data:

Installation:

Using pip:

pip install fkcenters

Import the packages:

from FkCenters.FkCenters import FkCenters
from FkCenters import TDef
import numpy as np

Generate a simple categorical dataset:

X = np.array([[0,0,0],[0,1,1],[0,0,0],[1,0,1],[2,2,2],[2,3,2],[2,3,2]])
y = np.array([0,0,0,0,1,1,1])

LSHk-Representatives (Init):

algo = FkCenters(X,y ,k=TDef.k, alpha=TDef.alpha)
algo.SetupMeasure("Overlap")
algo.DoCluster()
algo.CalcScore()

Built-in evaluattion metrics:

algo.CalcFuzzyScore()

Outcome:

SKIP LOADING distMatrix because: True bd=None yellow
Saving Overlap to: saved_dist_matrices/json/Overlap_None.json
Purity: 1.00 NMI: 1.00 ARI: 1.00 Sil:  0.59 Acc: 1.00 Recall: 1.00 Precision: 1.00
Fuzzy scores PC:1.00 NPC:1.00 FHV↓:0.02 FS↓:-2000.00 XB↓:0.11 BH↓:0.06 BWS:-2000.00 FPC:3.50 SIL_R:0.70 FSIL:0.70 MPO:12.15 NPE:0.01 PE:0.01 PEB:0.01

Parameters:

X: Categorical dataset
y: Labels of object (for evaluation only)
n_init: Number of initializations
n_clusters: Number of target clusters
max_iter: Maximum iterations
verbose:
random_state:

If the variable MeasureManager.IS_LOAD_AUTO is set to "True": The DILCA will get the pre-caculated matrix

Outputs:

cluster_representatives: List of final representatives
labels_: Prediction labels
u: Fuzzy membership cost_: Final sum of squared distance from objects to their centroids
n_iter_: Number of iterations

References:

T. N. Mau and V. -N. Huynh, ``Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data," 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021, pp. 1-6, doi: 10.1109/FUZZ45933.2021.9494597.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fkcenters-1.0.3.tar.gz (15.5 kB view details)

Uploaded Source

File details

Details for the file fkcenters-1.0.3.tar.gz.

File metadata

  • Download URL: fkcenters-1.0.3.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.8

File hashes

Hashes for fkcenters-1.0.3.tar.gz
Algorithm Hash digest
SHA256 b233979bcefa287731b4beec2eaaa534eea2eecf6f80d9847ed7aae333bc5b03
MD5 c564c20de9897127c7992bf17833422f
BLAKE2b-256 f63a2032b1dd9e7cbe998359302dcd6abf843366f1e3c983940fef784926151d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page