Skip to main content

An out-of-the-box toolkit for data processing.

Project description

FlagData Pypi Package Python Application License GitHub release (release name instead of tag name)

| English | 中文 |


Data is one of the essential elements in the development of artificial intelligence. With the continuous breakthrough of large-scale pre-training models and related technologies, using efficient data processing tools to improve data quality in the corresponding research becomes increasingly important. Therefore, we present FlagData, a data processing toolkit that is easy to use and expand. FlagData integrates the tools and algorithms of multi-step data processing, including cleaning, condensation, annotation and analysis, providing powerful data processing support for model training and deployment in multiple fields, including natural language processing and computer vision.

FlagData supports the following features:

  • Able to be used with simple configuration after installation. Realize customization functions with a few lines of code.

  • Provide methods that condense training data based on the distillation algorithm, achieving competitive performance with full-data training.

  • Help obtain high-quality structured data from raw html/text quickly. Sensitive information can be filtered out to avoid the risk of privacy disclosure.

  • Support the data annotation of multiple tasks in natural language processing and computer vision. The annotation results are convenient to be read and use.

News

  • [3rd Jan 2023] FlagData v1.0.0 is released!

Prerequisites and Installation

  • Python version >= 3.9
  • Pytorch version >= 1.11 if you want to use condensation module. Please refer to the official website and install the appropriate PyTorch version based on your environment.
  • Optional: NGINX is required if you want to use the annotation module. Follow the Quick Start to setup once nginx is installed. Install FlagData with all modules via pip. By doing this, the dependencies for all modules will be installed:
pip install flagdata[all]

Install preferred Flagdata modules via pip (module need to be replaced by module's name, such as cleaner, condensation, analysis, etc. ). By doing this, only the specified module's dependencies will be installed. This is for users who only want to use a specific module and do not want to install the other dependencies:

pip install flagdata[module]

Install the latest main-branch version

If you want to install the up-to-date version from main branch, use the following method:

pip install .[all]

Develop FlagData locally

git clone https://github.com/cofe-ai/FlagData.git
pip install -r requirements.txt

Quick Start

Data Cleaning

There are basically 2 steps in order to use our FlagData Cleaner tool:

  1. Modify the YAML config file according to your data format. We have written detailed comments in the configuration file to explain the meaning of each parameter. You can also refer to Configuration.

  2. Specify the path to the configuration file and run!

    from flagdata.cleaner.text_cleaner import DataCleaner
    # use safe importing of main module in multi-processing  
    if __name__ == "__main__": 
        # you need to specify your own configuration file path
        cleaner = DataCleaner("config.yaml")
        cleaner.clean()
    

The cleaned data will be saved to the corresponding path in jsonl format according to the output parameter in the configuration file.

Data Analysis

The quickest way to use our analyzer is to use our client to call the official demo server and specify the language.

from flagdata.analysis.text_analyzer import CoreNLPAnalyzer
# call the official demo server, or you can setup you own server
analyzer = CoreNLPAnalyzer(url="https://corenlp.run", lang="en")
data = "FlagData is a fast and extensible toolkit for data processing provided by BAAI. Enjoy yourself! "
tokenized_text = analyzer.tokenize(data)
print(tokenized_text)
# [['FlagData', 'is', 'a', 'fast', 'and', 'extensible', 'toolkit', 'for', 'data', 'processing', 'provided', 'by', 'BAAI', '.'], ['Enjoy', 'yourself', '!']]
pos_tags = analyzer.pos_tag(data)
print(pos_tags)
# [['NNP', 'VBZ', 'DT', 'JJ', 'CC', 'JJ', 'NN', 'IN', 'NN', 'NN', 'VBN', 'IN', 'NN', '.'], ['VB', 'PRP', '.']]
ners = analyzer.ner(data)
print(ners)
# [[{('BAAI', (74, 78)): 'ORGANIZATION'}], []]
analyzer.close()

Data Condensation

There are basically 2 steps in order to use our FlagData Condensation tool:

  1. Modify the YAML configuration file. We have written detailed comments in the configuration file to explain the meaning of each parameter. You can also refer to Configuration.

  2. Specify the path to the config file and run!

    from flagdata.condensation.data_distillation import DataDistillationTrainer
    # you need to specify your own configuration file path here
    trainer = DataDistillationTrainer("flagdata/config/distillation_config.yaml") 
    # data should be in jsonl format with keys: "text", "label"
    trainer.load_data()
    # fit() will run data condensation training and save the distilled data in binary format which can be read by torch.load()
    # you can specify the save path by setting "distilled_save_path" in config file
    trainer.fit()
    

Data Annotation

  1. Put the flagdata/annotation/dist folder under the default html of nginx.

  2. Modify nginx.confg to add location.

    location / {
        root /{your html path}/dist;   # change
        index index.html index.htm;
        try_files $uri $uri/ /index.html;
    }
    
  3. Restart nginx.

  4. Access the IP address configured by nginx.

Configuration

For the Cleaner and Condensation modules, we provide the following configuration templates: cleaner_config.yaml, distillation_config.yaml. The config files are in human-readable YAML format with detailed comments. Make sure you've modified related parameters before using.

You may need to pay attention to the following parameters:

Cleaner

  # path of the raw data to be cleaned.
  input: ./demo/demo_input.jsonl
  # cleaned data file save path
  output: ./demo/output.jsonl

Condensation

  train_data_path: <path to your train data>
  test_data_path: <path to your test data>
  # pretrained models from huggingface
  model_name: "/data/scripts/pretrained_models/distilbert-base-uncased"
  # model.fit() will run data condensaton algorithm and save distilled data here with binary format which can be read by torch.load()
  distilled_save_path: <path to save distilled data>
  # optional: load distilled data before training for initialization or to resume training
  distilled_load_path: null

Tutorials

We provide a series of tutorials to help you quickly get started using FlagData's features.

Contact Us

If you have any questions about FlagData's usage and code, you can raise your issues. You can also contact us through email at data@baai.ac.cn.

Reference

The project are partially based on GeneralNewsExtractor, emoji, text-data-distillation, transformers.

License

The majority of FlagData is licensed under the Apache 2.0 license, however portions of the project are available under separate license terms:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flagdata-1.0.0.tar.gz (946.7 kB view details)

Uploaded Source

Built Distribution

flagdata-1.0.0-py3-none-any.whl (960.6 kB view details)

Uploaded Python 3

File details

Details for the file flagdata-1.0.0.tar.gz.

File metadata

  • Download URL: flagdata-1.0.0.tar.gz
  • Upload date:
  • Size: 946.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.12

File hashes

Hashes for flagdata-1.0.0.tar.gz
Algorithm Hash digest
SHA256 8e88d03c9486990131696e66bb90d9a2f7933982f96395eed88ff45ca613696d
MD5 4ea752dc619fd57066a35a85568c8934
BLAKE2b-256 3d8aec6901f5fbf1ed98fdac2496e77423631f3d614de8969cc7b6c616adf786

See more details on using hashes here.

File details

Details for the file flagdata-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: flagdata-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 960.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.12

File hashes

Hashes for flagdata-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8e7bb3d433ad9fb220472198613046cd84286623fe8945a75d3cdae0f62ffade
MD5 4c1c6c2fd4b8a9e61034a9fa798e3b1c
BLAKE2b-256 0190eb76039b8b71d863a77879bc5abe161a954f378af7630aaf8362434bf3a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page