Skip to main content

bdd-plugin for the automated analysis of feature models

Project description

BDD plugin for flamapy

Description

This plugin supports Binary Decision Diagrams (BDDs) representations for feature models.

The plugin is based on flamapy and thus, it follows the same architecture:

The BDD plugin relies on the dd library to manipulate BDDs. The complete documentation of such library is available here.

The following is an example of feature model and its BDD using complemented arcs.

Requirements and Installation

pip install flamapy flamapy-fm flamapy-bdd

We have tested the plugin on Linux, but Windows is also supported.

Functionality and usage

The executable script test_bdd_metamodel.py serves as an entry point to show the plugin in action.

The following functionality is provided:

Load a feature model in UVL and create the BDD

from flamapy.metamodels.fm_metamodel.transformations import UVLReader
from flamapy.metamodels.bdd_metamodel.transformations import FmToBDD

# Load the feature model from UVL
feature_model = UVLReader('models/uvl_models/pizzas.uvl').transform()
# Create the BDD from the feature model
bdd_model = FmToBDD(feature_model).transform()

Save the BDD in a file

from flamapy.metamodels.bdd_metamodel.transformations import PNGWriter, DDDMPv3Writer
# Save the BDD as an image in PNG
PNGWriter(path='my_bdd.png', bdd_model).transform()
# Save the BDD in a .dddmp file
DDDMPv3Writer(f'my_bdd.dddmp', bdd_model).transform()

Writers available: DDDMPv3 ('dddmp'), DDDMPv2 ('dddmp'), JSON ('json'), Pickle ('p'), PDF ('pdf'), PNG ('png'), SVG ('svg').

Load the BDD from a file

from flamapy.metamodels.bdd_metamodel.transformations import JSONReader
# Load the BDD from a .json file
bdd_model = JSONReader(path='path/to/my_bdd.json').transform()

Readers available: JSON ('json'), DDDMP ('dddmp'), Pickle ('p').

NOTE: DDDMP and Pickle readers are not fully supported yet.

Analysis operations

  • Satisfiable

    Return whether the model is satisfiable (valid):

    from flamapy.metamodels.bdd_metamodel.operations import BDDSatisfiable
    satisfiable = BDDSatisfiable().execute(bdd_model).get_result()
    print(f'Satisfiable? (valid?): {satisfiable}')
    
  • Configurations number

    Return the number of configurations:

    from flamapy.metamodels.bdd_metamodel.operations import BDDConfigurationsNumber
    n_configs = BDDConfigurationsNumber().execute(bdd_model).get_result()
    print(f'#Configurations: {n_configs}')
    
  • Configurations

    Enumerate the configurations of the model:

    from flamapy.metamodels.bdd_metamodel.operations import BDDConfigurations
    configurations = BDDConfigurations().execute(bdd_model).get_result()
    for i, config in enumerate(configurations, 1):
        print(f'Config {i}: {[feat for feat in config.elements if config.elements[feat]]}')
    
  • Sampling

    Return a sample of the given size of uniform random configurations with or without replacement:

    from flamapy.metamodels.bdd_metamodel.operations import BDDSampling
    sampling_op = BDDSampling()
    sampling_op.set_sample_size(5)
    sampling_op.set_with_replacement(False)  # Default False
    sample = sampling_op.execute(bdd_model).get_result()
    for i, config in enumerate(sample, 1):
        print(f'Config {i}: {[feat for feat in config.elements if config.elements[feat]]}')
    
  • Product Distribution

    Return the number of products (configurations) having a given number of features:

    from flamapy.metamodels.bdd_metamodel.operations import BDDProductDistribution
    dist = BDDProductDistribution().execute(bdd_model).get_result()
    print(f'Product Distribution: {dist}')
    
  • Feature Inclusion Probability

    Return the probability for a feature to be included in a valid configuration:

    from flamapy.metamodels.bdd_metamodel.operations import BDDFeatureInclusionProbability
    prob = BDDFeatureInclusionProbability().execute(bdd_model).get_result()
    for feat in prob.keys():
        print(f'{feat}: {prob[feat]}')
    
  • Core features

    Return the core features (those features that are present in all the configurations):

    from flamapy.metamodels.bdd_metamodel.operations import BDDCoreFeatures
    core_features = BDDCoreFeatures().execute(bdd_model).get_result()
    print(f'Core features: {core_features}')
    
  • Dead features

    Return the dead features (those features that are not present in any configuration):

    from flamapy.metamodels.bdd_metamodel.operations import BDDDeadFeatures
    dead_features = BDDDeadFeatures().execute(bdd_model).get_result()
    print(f'Dead features: {dead_features}')
    

Most analysis operations support also a partial configuration as an additional argument, so the operation will return the result taking into account the given partial configuration. For example:

from flamapy.core.models import Configuration
# Create a partial configuration
elements = {'Pizza': True, 'Big': True}
partial_config = Configuration(elements)
# Calculate the number of configuration from the partial configuration
configs_number_op = BDDConfigurationsNumber()
configs_number_op.set_partial_configuration(partial_config)
n_configs = configs_number_op.execute(bdd_model).get_result()
print(f'#Configurations: {n_configs}')

Contributing to the BDD plugin

To contribute in the development of this plugin:

  1. Fork the repository into your GitHub account.
  2. Clone the repository: git@github.com:<<username>>/bdd_metamodel.git
  3. Create a virtual environment: python -m venv env
  4. Activate the virtual environment: source env/bin/activate
  5. Install the plugin dependencies: pip install flamapy flamapy-fm
  6. Install the BDD plugin from the source code: pip install -e bdd_metamodel

Please try to follow the standards code quality to contribute to this plugin before creating a Pull Request:

  • To analyze your Python code and output information about errors, potential problems, convention violations and complexity, pass the prospector with:

    make lint

  • To analyze the static type checker for Python and find bugs, pass the Mypy:

    make mypy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flamapy-bdd-2.0.0.dev8.tar.gz (27.0 kB view details)

Uploaded Source

Built Distribution

flamapy_bdd-2.0.0.dev8-py3-none-any.whl (44.6 kB view details)

Uploaded Python 3

File details

Details for the file flamapy-bdd-2.0.0.dev8.tar.gz.

File metadata

  • Download URL: flamapy-bdd-2.0.0.dev8.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for flamapy-bdd-2.0.0.dev8.tar.gz
Algorithm Hash digest
SHA256 8f914a07adcd050fe4e03816506f550ea97ae2e00570058d790129db27f27290
MD5 2d61ebf3c7617ec864d1eac92abecb2b
BLAKE2b-256 dd13d03dd3c8df715ffddefc9c0699501e92f9cc68101183fbd55deb95ba0358

See more details on using hashes here.

File details

Details for the file flamapy_bdd-2.0.0.dev8-py3-none-any.whl.

File metadata

File hashes

Hashes for flamapy_bdd-2.0.0.dev8-py3-none-any.whl
Algorithm Hash digest
SHA256 b36f2a679f8c7d34dc619205e9ac6dabee5b401362726487d67f0085cd4fdc30
MD5 8b4ab94c73f75ba0dadf00328315ac7a
BLAKE2b-256 e33c03f4771720d9aa13e1388302b2d989f08a47060ac6946416640aed4a3e79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page