Skip to main content

Minimalistic toolkit for PyTorch

Project description

FlameKit

Downloads

FlameKit is a minimalistic toolkit for PyTorch, created to streamline the training and evaluation process. It is designed to eliminate the boilerplate code needed for looping over datasets, logging metrics, and plotting results. Each critical part of the training and evaluation phases is implemented in a different compartmentalized function, which can be overridden to cater to specific use cases. It is intended to be lightweight, fast, and highly customizable.

FlameKit provides a trainer class, callbacks with predefined hooks, functionality for setting up a reproducible environment, customizable progress bars, learning rate schedulers, and more. Its API is similar to PyTorch Lightning's, but it prioritizes minimal code and lightweight design.

Check the /examples directory for more detailed information on how to use this package.

Installation

You can install FlameKit via pip:

pip install flamekit

Quick Start

Here's a simple example demonstrating how to train a PyTorch model using FlameKit alongside custom callbacks. For more detailed examples explore the /examples directory:

from flamekit.trainer import TorchTrainer
from flamekit.callbacks import Callback
from flamekit.pbars import TQDMProgressBar
from flamekit.utils import get_next_experiment_path, set_up_reproducible_env
from flamekit.var_scheduler import VariableScheduler, CosineDecay, LinearDecay

set_up_reproducible_env(seed=1337)

total_it = epochs * len(train_loader)
warmup_it = warmup_epochs * len(train_loader)      # Warmup iterations
cooldown_it = cooldown_epochs * len(train_loader)  # Cooldown iterations
lr_decay_it = total_it - cooldown_it
lr_decay_fn = CosineDecay(k=2)
    
class TrainingStrategy(Callback):
    
    def __init__(self) -> None:
        self.lr_scheduler = VariableScheduler(
            lr0, lrf, lr_decay_it, warmup_it=warmup_it, decay_fn=lr_decay_fn
        )
        
    def on_fit_start(self, trainer, model):
        self.lr_scheduler.reset()
    
    def on_train_batch_start(self, trainer, model, batch, batch_idx):
        # Update lr
        new_lr = self.lr_scheduler.step()
        for param_group in trainer.optimizer.param_groups:
            param_group["lr"] = new_lr
        # Monitor lr
        trainer.log([('lr', new_lr)], average=False)

trainer = TorchTrainer(model, device)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr0)
criterion = torch.nn.CrossEntropyLoss()

trainer.compile(optimizer, criterion=criterion)

# Train your model
strategy = TrainingStrategy()
pbar = TQDMProgressBar(show_remaining_time=False, show_rate=False)
callbacks = [strategy, pbar]

history = trainer.fit(
    train_loader,
    epochs=epochs,
    validation_loader=val_loader,
    monitor='val_loss',
    dest_path=get_next_experiment_path('./checkpoints'),
    prefix=model.__class__.__name__,
    save_best=True,
    callbacks=callbacks
)
Epoch 1/10: 100% |██████████████████████████████| 58/58 [00:30, lr=0.001, loss=1.96, val_loss=1.77]
[INFO] Saving best checkpoint, regarding 'val_loss' metric -- mode='min' (checkpoints\experiment_2\ckp_val-loss_1.7744_1_best.pt)
Epoch 2/10: 100% |██████████████████████████████| 58/58 [00:29, lr=0.001, loss=1.72, val_loss=1.79]
Epoch 3/10:  72% |█████████████████████▋        | 42/58 [00:22, lr=0.000999, loss=1.68]
...

Using Evaluator Callback

Evaluator callbacks can be used to evaluate the model at each step or epoch and log the results to the trainer. You can create your own evaluators by inheriting from the BaseEvaluator class and implementing the calc_metrics and reset_metrics methods. Additionally, an in-built evaluator called TorchMetricsEvaluator is available, which accepts torchmetrics metrics. Here's how to use it:

import torchmetrics
from flamekit.callbacks import TorchMetricsEvaluator
    
evaluator = TorchMetricsEvaluator()

class Accuracy(torchmetrics.Accuracy):
    def update(self, preds, target):
        preds = preds.argmax(dim=1)
        super().update(preds, target)

metrics = {
    'acc': Accuracy(task=task, num_classes=n_classes, average=average),
    'precision': torchmetrics.Precision(task=task, num_classes=n_classes, average=average),
    'recall': torchmetrics.Recall(task=task, num_classes=n_classes, average=average),
    'f1': torchmetrics.F1Score(task=task, num_classes=n_classes, average=average),
    'auc': torchmetrics.AUROC(task=task, num_classes=n_classes, average=average),
}
evaluator.add_metrics(metrics)

callbacks = [evaluator, pbar]

history = trainer.fit(
    ...,
    callbacks=callbacks
)
Epoch 1/10: 100% |██████████████████████████████| 50/50 [00:56, loss=0.886, acc=0.746, auc=0.946, f1=0.726, precision=0.751, recall=0.746]
Epoch 2/10:  72% |█████████████████████▌        | 36/50 [00:35, loss=0.253, acc=0.923, auc=0.996, f1=0.92, precision=0.925, recall=0.923] 

Metrics Logging and Plots

While training, all metrics are logged to a .csv file in the experiments directory. Right before finishing the training, all metrics are plotted and saved. You can easily plot the generated figure by calling:

trainer.plot()

Results Example

You can customize your own figures with different colors, select which metrics to show, and save them to a different file:

trainer.plot(metrics=['f1', 'auc'], colors=[['#000000', '#1f77b4'], ['#2B2F42', '#EF233C']], dest_path=exp_path/'customization_example.png')

Customization Example

You can also compare the results of different experiments with a few lines of code (/examples/compare_results.ipynb):

Results Comparison Example

Extending Trainer Functionality

You can override the main trainer function to customize its behavior. For example, to create an Automatic Mixed Precision (AMP) Trainer:

from flamekit.training import TorchTrainer

class AMPTrainer(TorchTrainer):
    
    def __init__(self, model, device, amp_dtype=torch.float16, scale=True) -> None:
        super().__init__(model, device)
        self.scaler = torch.cuda.amp.GradScaler()
        self.amp_dtype = amp_dtype
        self.scale = scale
    
    def training_step(self, batch, batch_idx) -> tuple[torch.Tensor, torch.Tensor]:
        inputs, labels = batch
        with torch.autocast(device_type=inputs.device.type, dtype=self.amp_dtype):
            outputs = self.model(inputs)
            step_loss = self.loss_step(outputs, labels)
        return outputs, step_loss

    def optimizer_step(self, loss, optimizer):
        optimizer.zero_grad()
        if self.scale:
            self.scaler.scale(loss).backward()
            self.scaler.step(optimizer)
            self.scaler.update()
        else:
            loss.backward()
            optimizer.step()

Customizable Progress Bars

FlameKit provides a highly customizable progress bar based on TQDM. Here's an example:

from flamekit.pbars import TQDMProgressBar 

# Customize the progress bar
pbar = TQDMProgressBar(pbar_size:int=30, ascii=None, desc_above=False,
                 show_desc=True, show_elapsed_time=True, show_remaining_time=True, show_rate=True,
                 show_postfix=True, show_n_fmt=True, show_total_fmt=True, show_percentage=True,
                 pbar_frames=('|','|'), l_bar=None, r_bar=None)

history = trainer.fit(
    ...,
    callbacks=[pbar]
)
Epoch 1/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 91.17 steps/s, loss=0.278]
Epoch 2/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 72.83 steps/s, loss=0.166] 
Epoch 3/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 96.45 steps/s, loss=0.0967]

It also implements a KerasProgressBar class, which inherits from TQDMProgressBar and tries to replicate the Keras design:

from flamekit.pbars import KerasProgressBar 

# Customize the progress bar
pbar = KerasProgressBar(pbar_size:int=30, ascii='.>=', desc_above=True, show_desc=True,
                 show_elapsed_time=True, show_rate=True, show_postfix=True, show_n_fmt=True,
                 show_total_fmt=True, pbar_frames=('[', ']'))

history = trainer.fit(
    ...,
    callbacks=[pbar]
)
Epoch 1/10
50/50 [==============================] - 00:00 77.64 steps/s, loss=0.303 
Epoch 2/10
50/50 [==============================] - 00:00 95.95 steps/s, loss=0.172
Epoch 3/10
50/50 [==============================] - 00:00 90.37 steps/s, loss=0.104 

Additionally, you can inspect pbars.py file to see how to create your own Progress Bar designs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

flamekit-0.2.3-py3-none-any.whl (27.0 kB view details)

Uploaded Python 3

File details

Details for the file flamekit-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: flamekit-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 27.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/6.6.0 pkginfo/1.8.2 requests/2.32.3 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.16

File hashes

Hashes for flamekit-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 61e677f88ca4ae815ef5bac7bf59d8e082ed6fe0c38f9e8faeea175aceea9e42
MD5 411cb442c53a28ec59679abce19c39dd
BLAKE2b-256 040d128b16f18012b411c014584db69360eda51de2ecd4008ecb42c6301359ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page