Minimalistic toolkit for PyTorch
Project description
FlameKit
FlameKit is a minimalistic toolkit for PyTorch, created to streamline the training and evaluation process. It is designed to eliminate the boilerplate code needed for looping over datasets, logging metrics, and plotting results. Each critical part of the training and evaluation phases is implemented in a different compartmentalized function, which can be overridden to cater to specific use cases. It is intended to be lightweight, fast, and highly customizable.
FlameKit provides a trainer class, callbacks with predefined hooks, functionality for setting up a reproducible environment, customizable progress bars, learning rate schedulers, and more. Its API is similar to PyTorch Lightning's, but it prioritizes minimal code and lightweight design.
Check the /examples
directory for more detailed information on how to use this package.
- Installation
- Quick Start
- Using Evaluator Callback
- Metrics Logging and Plots
- Extending Trainer Functionality
- Customizable Progress Bars
Installation
You can install FlameKit via pip:
pip install flamekit
Quick Start
Here's a simple example demonstrating how to train a PyTorch model using FlameKit alongside custom callbacks. For more detailed examples explore the /examples
directory:
from flamekit.trainer import TorchTrainer
from flamekit.callbacks import Callback
from flamekit.pbars import TQDMProgressBar
from flamekit.utils import get_next_experiment_path, set_up_reproducible_env
from flamekit.var_scheduler import VariableScheduler, CosineDecay, LinearDecay
set_up_reproducible_env(seed=1337)
total_it = epochs * len(train_loader)
warmup_it = warmup_epochs * len(train_loader) # Warmup iterations
cooldown_it = cooldown_epochs * len(train_loader) # Cooldown iterations
lr_decay_it = total_it - cooldown_it
lr_decay_fn = CosineDecay(k=2)
class TrainingStrategy(Callback):
def __init__(self) -> None:
self.lr_scheduler = VariableScheduler(
lr0, lrf, lr_decay_it, warmup_it=warmup_it, decay_fn=lr_decay_fn
)
def on_fit_start(self, trainer, model):
self.lr_scheduler.reset()
def on_train_batch_start(self, trainer, model, batch, batch_idx):
# Update lr
new_lr = self.lr_scheduler.step()
for param_group in trainer.optimizer.param_groups:
param_group["lr"] = new_lr
# Monitor lr
trainer.log([('lr', new_lr)], average=False)
trainer = TorchTrainer(model, device)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr0)
criterion = torch.nn.CrossEntropyLoss()
trainer.compile(optimizer, criterion=criterion)
# Train your model
strategy = TrainingStrategy()
pbar = TQDMProgressBar(show_remaining_time=False, show_rate=False)
callbacks = [strategy, pbar]
history = trainer.fit(
train_loader,
epochs=epochs,
validation_loader=val_loader,
monitor='val_loss',
dest_path=get_next_experiment_path('./checkpoints'),
prefix=model.__class__.__name__,
save_best=True,
callbacks=callbacks
)
Epoch 1/10: 100% |██████████████████████████████| 58/58 [00:30, lr=0.001, loss=1.96, val_loss=1.77]
[INFO] Saving best checkpoint, regarding 'val_loss' metric -- mode='min' (checkpoints\experiment_2\ckp_val-loss_1.7744_1_best.pt)
Epoch 2/10: 100% |██████████████████████████████| 58/58 [00:29, lr=0.001, loss=1.72, val_loss=1.79]
Epoch 3/10: 72% |█████████████████████▋ | 42/58 [00:22, lr=0.000999, loss=1.68]
...
Using Evaluator Callback
Evaluator callbacks can be used to evaluate the model at each step or epoch and log the results to the trainer. You can create your own evaluators by inheriting from the BaseEvaluator
class and implementing the calc_metrics
and reset_metrics
methods. Additionally, an in-built evaluator called TorchMetricsEvaluator
is available, which accepts torchmetrics
metrics. Here's how to use it:
import torchmetrics
from flamekit.callbacks import TorchMetricsEvaluator
evaluator = TorchMetricsEvaluator()
class Accuracy(torchmetrics.Accuracy):
def update(self, preds, target):
preds = preds.argmax(dim=1)
super().update(preds, target)
metrics = {
'acc': Accuracy(task=task, num_classes=n_classes, average=average),
'precision': torchmetrics.Precision(task=task, num_classes=n_classes, average=average),
'recall': torchmetrics.Recall(task=task, num_classes=n_classes, average=average),
'f1': torchmetrics.F1Score(task=task, num_classes=n_classes, average=average),
'auc': torchmetrics.AUROC(task=task, num_classes=n_classes, average=average),
}
evaluator.add_metrics(metrics)
callbacks = [evaluator, pbar]
history = trainer.fit(
...,
callbacks=callbacks
)
Epoch 1/10: 100% |██████████████████████████████| 50/50 [00:56, loss=0.886, acc=0.746, auc=0.946, f1=0.726, precision=0.751, recall=0.746]
Epoch 2/10: 72% |█████████████████████▌ | 36/50 [00:35, loss=0.253, acc=0.923, auc=0.996, f1=0.92, precision=0.925, recall=0.923]
Metrics Logging and Plots
While training, all metrics are logged to a .csv file in the experiments directory. Right before finishing the training, all metrics are plotted and saved. You can easily plot the generated figure by calling:
trainer.plot()
You can customize your own figures with different colors, select which metrics to show, and save them to a different file:
trainer.plot(metrics=['f1', 'auc'], colors=[['#000000', '#1f77b4'], ['#2B2F42', '#EF233C']], dest_path=exp_path/'customization_example.png')
You can also compare the results of different experiments with a few lines of code (/examples/compare_results.ipynb
):
Extending Trainer Functionality
You can override the main trainer function to customize its behavior. For example, to create an Automatic Mixed Precision (AMP) Trainer:
from flamekit.training import TorchTrainer
class AMPTrainer(TorchTrainer):
def __init__(self, model, device, amp_dtype=torch.float16, scale=True) -> None:
super().__init__(model, device)
self.scaler = torch.cuda.amp.GradScaler()
self.amp_dtype = amp_dtype
self.scale = scale
def training_step(self, batch, batch_idx) -> tuple[torch.Tensor, torch.Tensor]:
inputs, labels = batch
with torch.autocast(device_type=inputs.device.type, dtype=self.amp_dtype):
outputs = self.model(inputs)
step_loss = self.loss_step(outputs, labels)
return outputs, step_loss
def optimizer_step(self, loss, optimizer):
optimizer.zero_grad()
if self.scale:
self.scaler.scale(loss).backward()
self.scaler.step(optimizer)
self.scaler.update()
else:
loss.backward()
optimizer.step()
Customizable Progress Bars
FlameKit provides a highly customizable progress bar based on TQDM. Here's an example:
from flamekit.pbars import TQDMProgressBar
# Customize the progress bar
pbar = TQDMProgressBar(pbar_size:int=30, ascii=None, desc_above=False,
show_desc=True, show_elapsed_time=True, show_remaining_time=True, show_rate=True,
show_postfix=True, show_n_fmt=True, show_total_fmt=True, show_percentage=True,
pbar_frames=('|','|'), l_bar=None, r_bar=None)
history = trainer.fit(
...,
callbacks=[pbar]
)
Epoch 1/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 91.17 steps/s, loss=0.278]
Epoch 2/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 72.83 steps/s, loss=0.166]
Epoch 3/10: 100% |██████████████████████████████| 50/50 [00:00<00:00, 96.45 steps/s, loss=0.0967]
It also implements a KerasProgressBar
class, which inherits from TQDMProgressBar
and tries to replicate the Keras design:
from flamekit.pbars import KerasProgressBar
# Customize the progress bar
pbar = KerasProgressBar(pbar_size:int=30, ascii='.>=', desc_above=True, show_desc=True,
show_elapsed_time=True, show_rate=True, show_postfix=True, show_n_fmt=True,
show_total_fmt=True, pbar_frames=('[', ']'))
history = trainer.fit(
...,
callbacks=[pbar]
)
Epoch 1/10
50/50 [==============================] - 00:00 77.64 steps/s, loss=0.303
Epoch 2/10
50/50 [==============================] - 00:00 95.95 steps/s, loss=0.172
Epoch 3/10
50/50 [==============================] - 00:00 90.37 steps/s, loss=0.104
Additionally, you can inspect pbars.py
file to see how to create your own Progress Bar designs.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file flamekit-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: flamekit-0.2.3-py3-none-any.whl
- Upload date:
- Size: 27.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/6.6.0 pkginfo/1.8.2 requests/2.32.3 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61e677f88ca4ae815ef5bac7bf59d8e082ed6fe0c38f9e8faeea175aceea9e42 |
|
MD5 | 411cb442c53a28ec59679abce19c39dd |
|
BLAKE2b-256 | 040d128b16f18012b411c014584db69360eda51de2ecd4008ecb42c6301359ce |