An Open-Source Library for Frequency-Domain Differentiable Audio Processing
Project description
flamo
Open-source library for frequency-domain differentiable audio processing.
It contains differentiable implementation of common LTI audio systems modules with learnable parameters.
⚙️ Optimization of audio LTI systems
Available differentiable audio signal processors - in flamo.processor.dsp
:
- Gains : Gains, Matrices, Householder Matrices
- Filters : Biquads, State Variable Filters (SVF), Graphic Equalizers (GEQ), Parametric Equiliers (PEQ - not released yet)
- Delays : Integer Delays, Fractional Delays
Transforms - in flamo.processor.dsp
:
- Transform : FFT, iFFT, time anti-aliasing enabled FFT and iFFT
Utilities, system designers, and optimization - in flamo.processor.system
:
- Series : Serial chaining of differentiable systems
- Recursion : Closed loop with assignable feedforward and feedback paths
- Shell: Container class for safe interaction between system, dataset, and loss functions
Optimization - in flamo.optimize
:
- Trianer : Handling of the training and validation steps
- Dataset : Customizable dataset class and helper methods
🛠️ Installation
To install it via pip, on a new python virtual environment flamo-env
python3.10 -m venv .flamo-env
source .flamo-env/bin/activate
pip install flamo
If you are using conda, you might need to install libsndfile
manually
conda create -n flamo-env python=3.10
conda activate flamo-env
pip install flamo
conda install -c conda-forge libsndfile
For local installation: clone and install dependencies on a new pyton virtual environment flamo-env
git clone https://github.com/gdalsanto/flamo
cd flamo
python3.10 -m venv .flamo-env
source .flamo-env/bin/activate
pip install -e .
Note that it requires python>=3.10
💻 How to use the library
We included a few examples in ./examples
that take you through the library's API.
The following example demonstrates how to optimize the parameters of Biquad filters to match a target magnitude response. This is just a toy example; you can create and optimize much more complex systems by cascading modules either serially or recursively.
Import modules
import torch
import torch.nn as nn
from flamo.optimize.dataset import Dataset, load_dataset
from flamo.optimize.trainer import Trainer
from flamo.processor import dsp, system
from flamo.functional import signal_gallery, highpass_filter
Define parameters and target response with randomized cutoff frequency and gains
in_ch, out_ch = 1, 2 # input and output channels
n_sections = 2 # number of cascaded biquad sections
fs = 48000 # sampling frequency
nfft = fs*2 # number of fft points
b, a = highpass_filter(
fc=torch.tensor(fs/2)*torch.rand(size=(n_sections, out_ch, in_ch)),
gain=torch.tensor(-1) + (torch.tensor(2))*torch.rand(size=(n_sections, out_ch, in_ch)),
fs=fs)
B = torch.fft.rfft(b, nfft, dim=0)
A = torch.fft.rfft(a, nfft, dim=0)
target_filter = torch.prod(B, dim=1) / torch.prod(A, dim=1)
Define an instance of learnable Biquads
filt = dsp.Biquad(
size=(out_ch, in_ch),
n_sections=n_sections,
filter_type='highpass',
nfft=nfft,
fs=fs,
requires_grad=True,
alias_decay_db=0,
)
Use the Shell
class to add input and output layers and to get the magnitude response at initialization
Optimization is done in the frequency domain. The input will be an impulse in the time domain, thus the input layer should perform the Fourier transform.
The target is the magnitude response, so the output layer takes the absolute value of the filter's output.
input_layer = dsp.FFT(nfft)
output_layer = dsp.Transform(transform=lambda x : torch.abs(x))
model = system.Shell(core=filt, input_layer=input_layer, output_layer=output_layer)
estimation_init = model.get_freq_response()
Set up optimization framework and launch it. The Trainer
class is used to contain the model, training parameters, and training/valid steps in one class.
input = signal_gallery(1, n_samples=nfft, n=in_ch, signal_type='impulse', fs=fs)
target = torch.einsum('...ji,...i->...j', target_filter, input_layer(input))
dataset = Dataset(
input=input,
target=torch.abs(target),
expand=100,
)
train_loader, valid_loader = load_dataset(dataset, batch_size=1)
trainer = Trainer(model, max_epochs=10, lr=1e-2, train_dir="./output")
trainer.register_criterion(nn.MSELoss(), 1)
trainer.train(train_loader, valid_loader)
end get the resulting response after optimization!
estimation = model.get_freq_response()
📖 Reference
This work has been submitted to ICASSP 2025. Pre-print is available on arxiv.
Dal Santo, G., De Bortoli, G. M., Prawda, K., Schlecht, S. J., & Välimäki, V. (2024). FLAMO: An Open-Source Library for Frequency-Domain Differentiable Audio Processing. arXiv preprint arXiv:2409.08723.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file flamo-0.0.10.tar.gz
.
File metadata
- Download URL: flamo-0.0.10.tar.gz
- Upload date:
- Size: 13.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 070fef655c87479bd1c09d128ef2b273d2987cc6c3c353f88e6e963da3cc8ff7 |
|
MD5 | e98cae15662f0014aff99672e833b724 |
|
BLAKE2b-256 | b71c5d3343324866d1dd12483ef1679f90f935ac0389324bc414f1f15379d4c8 |
File details
Details for the file flamo-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: flamo-0.0.10-py3-none-any.whl
- Upload date:
- Size: 38.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5dea9b07c3371154f5a9c2d86787a7e90baab2654d4d60e6e5fa8c3ec6cfc312 |
|
MD5 | d4ac2642c277d46be3ac09519e813cc2 |
|
BLAKE2b-256 | 1ab2598167a9dfd8293a5543a509e28d717f3dfa16d082ed8748be4118170108 |