Skip to main content

cherrypy server for Flask + task scheduler and monitor

Project description

Cherrypy prod server for Flask + parallel task scheduler

Python 3.6 license pytest

Installation

pip install flask_production

Usage example

CherryFlask

Cherrypy server on top of Flask app

CherryFlask(app, scheduler=None, silent=False)

Parameters:

  • app (Flask): Flask application

  • scheduler (TaskScheduler): task scheduler to run in parallel with Flask app

  • silent (bool): don’t print logs
    • default False

from flask import Flask
from flask_production import CherryFlask

app = Flask(__name__)
...

cherry = CherryFlask(app)
cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

TaskScheduler

Main class to setup, run and manage jobs
TaskScheduler(check_interval=5,
   holidays_calendar=None,
   tzname=None,
   on_job_error=None,
   log_filepath=None,
   log_maxsize=5*1024*1024, # 5 MB
   log_backups=1,
   startup_grace_mins=0, # minutes
   persist_states=True)

Parameters:

  • check_interval (int): how often to check for pending jobs
    • default 5 seconds

  • holidays_calendar (holidays.HolidayBase): calendar to use for intervals like businessday
    • default US holidays

  • tzname (str): name of timezone as supported by dateutil.tz

  • on_job_error (func(e)): function to call if any job fails

  • log_filepath (path): file to write logs to

  • log_maxsize (int): byte limit per log file
    • default 5 mb (only effective if log_filepath is provided)

  • log_backups (int): number of backups of logs to retain
    • default 1 (only effective if log_filepath is provided)

  • startup_grace_mins (int): grace period for tasks in case a schedule was missed because of app restart
    • default 0

  • persist_states (bool): store job logs on disk so that they can be read back on app restart
    • default True (logs will be stored in a unique data directory)

from flask_production import TaskScheduler

sched = TaskScheduler(check_interval=2)

# Run every minute
sched.every(60).do(foo)

# Run on end of every month (with strict_date False)
sched.every("31st").strict_date(False).at("08:00").do(foo)

# Run every weekday
sched.every("weekday").at("08:00").do(lambda:bar())
sched.every("weekday").at("08:00").timezone("Europe/London").do(lambda:bar())

# catch() will run on job error
example_job = sched.every("weekday").at("09:00").do(lambda:failing()).catch(lambda e: print(e))

# access job information and status as dict
print(example_job.to_dict())
print(sched.jobs[-1].to_dict()) # same job

sched.start() # starts the task scheduler and blocks

Instead of sched.start(), TaskScheduler can be run in parallel with a Flask application using CherryFlask

from flask import Flask
from flask_production import TaskScheduler, CherryFlask

app = Flask(__name__)
...

sched = TaskScheduler()
...

cherry = CherryFlask(app, scheduler=sched)
cherry.run(host="0.0.0.0", port=8080, threads=5, debug=False)

TaskMonitor

The TaskScheduler exposes a list of Job objects through the .jobs attribute
Job information and logs from the last execution are available using the .to_dict() method
TaskMonitor uses these features to provide a web interface to view and rerun tasks
TaskMonitor(
   app,
   sched,
   display_name=None,
   endpoint="@taskmonitor",
   homepage_refresh=30,
   taskpage_refresh=5)

Parameters:

  • app (int): Flask application

  • sched (TaskScheduler): task scheduler with task definitions

  • display_name (str): name of the application to be displayed
    • default app.name

  • endpoint (str): URL endpoint where the taskmonitor can be viewed
    • default “@taskmonitor”

  • homepage_refresh (int): home page auto refresh interval (in seconds)
    • default 30

  • taskpage_refresh (int): task page auto refresh interval (in seconds)
    • default 5

from flask import Flask
from flask_production import CherryFlask, TaskScheduler
from flask_production.plugins import TaskMonitor

app = Flask(__name__)
sched = TaskScheduler(check_interval=2)

monitor = TaskMonitor(app, sched)
print(monitor._endpoint) # /@taskmonitor

# Run every minute
sched.every(60).do(foo)

cherry = CherryFlask(app, scheduler=sched)
cherry.run(host="0.0.0.0", port=8080) # localhost:8080/@taskmonitor

Example Gist here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flask_production-2.8.5.tar.gz (24.0 kB view details)

Uploaded Source

Built Distribution

flask_production-2.8.5-py3-none-any.whl (26.6 kB view details)

Uploaded Python 3

File details

Details for the file flask_production-2.8.5.tar.gz.

File metadata

  • Download URL: flask_production-2.8.5.tar.gz
  • Upload date:
  • Size: 24.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for flask_production-2.8.5.tar.gz
Algorithm Hash digest
SHA256 5ec42086817d45485b67ceb9c161b4d018ec39e841de2806190b936904ec20a8
MD5 5c96a7da4e82ca54e2fe74a9d6be9628
BLAKE2b-256 eb62222fb5ab5e03f89f933f3ee7d8bd4179e1ac118fd51795c3d23c2c498809

See more details on using hashes here.

File details

Details for the file flask_production-2.8.5-py3-none-any.whl.

File metadata

File hashes

Hashes for flask_production-2.8.5-py3-none-any.whl
Algorithm Hash digest
SHA256 479c04081884894206737ac042dc298bca06e1678021fd782bc2b2d4ddd6e7b4
MD5 1092f79d16e83c3677034c55b8e9880e
BLAKE2b-256 a7b9a11f6001111a538a841ccf2adc468d6fba9efb1aff56b9f29d8d05a5b2b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page