Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

No project description provided

Project description


Build Status GitHub PyPI - Python Version

Provide OpenAPI document and validation for flask service.

Mainly built for Machine Learning Model services.

If you're using Falcon, check my another library Falibrary.


  • [x] JSON data(request&response) validation with pydantic
  • [x] support HTTP exceptions (default&customized)
  • [x] OpenAPI spec
  • [x] Redoc UI
  • [x] Swagger UI
  • [x] support flask url path validation
  • [ ] support header validation
  • [ ] support cookie validation

Quick Start

install with pip install flaskerk (Python 3.6+)

Simple demo

from flask import Flask, request, jsonify
from flaskerk import Flaskerk
from pydantic import BaseModel

class Query(BaseModel):
    text: str

app = Flask(__name__)
api = Flaskerk()

def classify():
    return jsonify(label=0)

if __name__ == "__main__":

Changes you need to make:

  • create model with pydantic
  • decorate the route function with Flaskerk.validate()
  • specify which part you need in validate
    • query (args in url)
    • data (JSON data)
    • resp (response)
    • x (HTTP Exceptions)
  • register to Flask application

After that, this library will help you validate the incoming request and provide API document in /docs.

For more details, check the document.

More feature

from flask import Flask, request
from pydantic import BaseModel, Schema
from random import random
from flaskerk import Flaskerk, HTTPException

app = Flask(__name__)
api = Flaskerk()

class Query(BaseModel):
    text: str

class Response(BaseModel):
    label: int
    score: float = Schema(

class Data(BaseModel):
    uid: str
    limit: int
    vip: bool

e403 = HTTPException(code=403, msg='lucky for you')

@app.route('/api/predict/<string(length=2):source>/<string(length=2):target>', methods=['POST'])
@api.validate(query=Query, data=Data, resp=Response, x=[e403])
def predict(source, target):
    print(f'=> from {source} to {target}')  # path
    print(f'Data: {request.json_data}')  # Data
    print(f'Query: {request.query}')  # Query
    if random() < 0.5:
    return Response(label=int(10 * random()), score=random())

if __name__ == '__main__':

try it with http POST ':5000/api/predict/zh/en?text=hello' uid=0b01001001 limit=5 vip=true

Open the docs in .

For more examples, check examples.


Can I just do the validation without generating API document?

Sure. If you don't register it to Flask application, there won't be document routes.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for flaskerk, version 0.5.3
Filename, size File type Python version Upload date Hashes
Filename, size flaskerk-0.5.3-py3-none-any.whl (10.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size flaskerk-0.5.3.tar.gz (9.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page