Generate mono and multilayer graphene geometries
Project description
Python module to generate flat (uncorrugated) graphene configurations with one or more layers, as well as twisted bilayer graphene.
Returns ASE atoms objects, which may be converted to your file format of choice (LAMMPS, xyz, etc.) in one line.
Installation
Install using pip
$ pip install flatgraphene
Examples
Shift
This example creates an ABA trilayer graphene system with rectangular unit cell. Any stacking designation (A,B,SP) is defined relative to the origin of the unit cell.
import ase
from ase.visualize import view
import flatgraphene as fg
#note the inputs are all given with variable name for clarity,
# but this is not necessary for required inputs
#the nearest neighbor distance (in-plane) a_nn is optional, and
# overrides the lat_con variable meaning the value of lat_con is unused
atoms=fg.shift.make_graphene(stacking=['A','B','A'],cell_type='rect',n_1=3,n_2=3,
lat_con=0.0,n_layer=3,sep=2.0,a_nn=1.5,
sym='C',mass=12,h_vac=3.0)
ase.visualize.view(atoms)
This example gives the same result as the above, but specifies the relevant properties per layer using lists (instead of with a single value to be assumed for all layers).
When lists are used, all must have length n_layer
.
Interlayer separation is relative to the layer below, with sep[i]
giving spacing between layer i
and i+1
.
The last element last element defines the spacing between top layer and top of supercell box (if no vacuum is added).
See the documentation in the section below for more information on fine grained options.
import ase
from ase.visualize import view
import flatgraphene as fg
#the comments from the above example apply here as well
atoms=fg.shift.make_graphene(stacking=['A','B','A'],cell_type='rect',n_1=3,n_2=3,
lat_con=0.0,n_layer=3,sep=[2.0,2.0,2.0],a_nn=1.5,
sym=['C','C','C'],mass=[12,12,12],h_vac=3.0)
ase.visualize.view(atoms)
Twist
This example creates a 9.43 degree twisted system by first computing the proper p,q
, then using these as inputs to make_graphene
.
All of the properties from the shifted case which can be set here also allow the same variety of input formats (scalar, list, etc.) as above.
import ase
from ase.visualize import view
import flatgraphene as fg
p_found, q_found, theta_comp = fg.twist.find_p_q(9.43)
atoms=fg.twist.make_graphene(cell_type='hex',n_layer=2,
p=p_found,q=q_found,lat_con=0.0,a_nn=1.5,
sep=3.35,h_vac=3)
ase.visualize.view(atoms)
Documentation
Non-twisted (shfited) graphene may be created using the shift.make_graphene
function, which returns an ASE atoms object.
Parameters include cell type (rectangular or hexagonal), alignment (A,B,C,SP), number of unit cells (in-plane), interlayer spacing, and lattice constant.
#in flatgraphene/shift.py
def make_graphene(stacking,cell_type,n_1,n_2,lat_con,n_layer,sep,a_nn=None,sym='C',
mass=12.01,h_vac=None):
"""
Generates untwisted, uncorrugated graphene and returns ASE atoms object
with specified graphene's geometry
---Input---
stacking: specification of stacking for layers above first,
('A','B','C','SP') relative to origin of cell,
single string, or list of strings, or numpy array of shape
(n_layer,2)
cell_type: unit cell type, 'rect' or 'hex', string
n_1: number of unit cells in x direction, integer
n_2: number of unit cells in y direction, integer
lat_con: in-plane lattice constant, float [Angstroms]
n_layer: number of graphene layers, integer
sep: interlayer separation(s) for n_layer>1, n_layer list of separations
(relative to layer below) or float (uniform separations)
last element specifies distance between top layer and top surface of box
a_nn: optional argument to specify distance between
nearest neighbors and override lat_con, float [Angstroms]
sym: optional atomic symbol(s), list of length n_layer containing
characters/strings or single character/string if same symbol
for every layer
mass: optional mass, list of length n_layer containing numeric values
or single numerical value if every layer has the same mass
h_vac: height of the vacuum layer above and below outer layers, float [Angstroms]
---Output---
atoms: ASE atoms object
"""
Twisted multi-layer graphene may be similarly created via twist.make_graphene
.
Parameters are similar to the shifted case, but note that twist angle is not an input parameters, rather the p,q
specification from "Electronic structure of turbostratic graphene" by Shallcross is preferred.
Use the function twist.find_p_q(theta)
(documentation below) to find the p,q
corresponding the desired twist angle, then use computed p,q
as the input to the graphene generator.
#in flatgraphene/twist.py
def make_graphene(cell_type,p,q,lat_con,n_layer,sep,a_nn=None,sym='C',
mass=12.01,h_vac=None):
"""
Generates twisted, uncorrugated graphene and returns ASE atoms object
with specified graphene's geometry
NOTE: This function does not allow the input of twist angle, rather
the user should determine the proper (p,q) via the provided function
find_q_p(theta), then use the computed (p,q) here.
---Input---
cell_type: unit cell type, 'rect' or 'hex', string
p : p value from "Electronic structure of turbostratic graphene"
by Shallcross et al, integer
q : q value from "Electronic structure of turbostratic graphene"
by Shallcross et al, integer
lat_con: in-plane lattice constant, float [Angstroms]
n_layer: number of graphene layers, integer
sep: interlayer separation(s) for n_layer>1, n_layer list of separations
(relative to layer below) or float (uniform separations)
last element specifies distance between top layer and top surface of box
a_nn: optional argument to specify distance between
nearest neighbors and override lat_con, float [Angstroms]
sym: optional atomic symbol(s), list of length n_layer containing
characters/strings or single character/string if same symbol
for every layer
mass: optional mass, list of length n_layer containing numeric values
or single numerical value if every layer has the same mass
h_vac: height of the vacuum layer above and below outer layers, float [Angstroms]
---Output---
atoms: ASE atoms object
"""
Compute the integers p,q
corresponding to input twist angle using twist.find_p_q
.
If no match to input angle is found with default parameters, consider increasing q_max
or decreasing a_tol
.
def find_p_q(theta_deg,q_max=100,a_tol=1e-2):
"""
Computes the p_q that generate a twist of theta degrees
---Inputs---
theta_deg : {float}
desired twist angle, [angular degrees]
q_max : {integer}
q >= p > 0, so q_max controls how many pairs are checked
a_tol : {float}
acceptable absolute difference between computed angle and desired angle
---Outputs---
p : {integer}
p value from "Electronic structure of turbostratic graphene" by Shallcross et al
q : {integer}
q value from "Electronic structure of turbostratic graphene" by Shallcross et al
"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for flatgraphene-0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 08b9d5fe1527084dbcf269677c83a6218b16958c3ca3a2aee01de8692910101f |
|
MD5 | c34d8e1643717e34d33b1e44dd0e1038 |
|
BLAKE2b-256 | 14840d886b1e1eddd6930d58a92dca1102881ea6114ed477c0d8d07790a9cfde |