Skip to main content

A flexible utility for flattening and unflattening dict-like objects in Python.

Project description

https://img.shields.io/travis/ianlini/flatten-dict/master.svg https://img.shields.io/pypi/v/flatten-dict.svg https://img.shields.io/pypi/l/flatten-dict.svg https://img.shields.io/github/stars/ianlini/flatten-dict.svg?style=social

A flexible utility for flattening and unflattening dict-like objects in Python.

Introduction

This Python package provide a function flatten() for flattening dict-like objects. It also provides some key joining methods (reducer), and you can choose the reducer you want or even implement your own reducer. You can also choose to invert the resulting flat dict.

Documentation

Flatten

def flatten(d, reducer='tuple', inverse=False, enumerate_types=(), keep_empty_types=()):
    """Flatten `Mapping` object.

    Parameters
    ----------
    d : dict-like object
        The dict that will be flattened.
    reducer : {'tuple', 'path', 'underscore', Callable}
        The key joining method. If a `Callable` is given, the `Callable` will be
        used to reduce.
        'tuple': The resulting key will be tuple of the original keys.
        'path': Use `os.path.join` to join keys.
        'underscore': Use underscores to join keys.
    inverse : bool
        Whether you want invert the resulting key and value.
    enumerate_types : Sequence[type]
        Flatten these types using `enumerate`.
        For example, if we set `enumerate_types` to ``(list,)``,
        `list` indices become keys: ``{'a': ['b', 'c']}`` -> ``{('a', 0): 'b', ('a', 1): 'c'}``.
    keep_empty_types : Sequence[type]
        By default, ``flatten({1: 2, 3: {}})`` will give you ``{(1,): 2}``, that is, the key ``3``
        will disappear.
        This is also applied for the types in `enumerate_types`, that is,
        ``flatten({1: 2, 3: []}, enumerate_types=(list,))`` will give you ``{(1,): 2}``.
        If you want to keep those empty values, you can specify the types in `keep_empty_types`:

        >>> flatten({1: 2, 3: {}}, keep_empty_types=(dict,))
        {(1,): 2, (3,): {}}

    Returns
    -------
    flat_dict : dict
    """

Examples

In [1]: from flatten_dict import flatten

In [2]: normal_dict = {
   ...:     'a': '0',
   ...:     'b': {
   ...:         'a': '1.0',
   ...:         'b': '1.1',
   ...:     },
   ...:     'c': {
   ...:         'a': '2.0',
   ...:         'b': {
   ...:             'a': '2.1.0',
   ...:             'b': '2.1.1',
   ...:         },
   ...:     },
   ...: }

In [3]: flatten(normal_dict)
Out[3]:
{('a',): '0',
 ('b', 'a'): '1.0',
 ('b', 'b'): '1.1',
 ('c', 'a'): '2.0',
 ('c', 'b', 'a'): '2.1.0',
 ('c', 'b', 'b'): '2.1.1'}

In [4]: flatten(normal_dict, reducer='path')
Out[4]:
{'a': '0',
 'b/a': '1.0',
 'b/b': '1.1',
 'c/a': '2.0',
 'c/b/a': '2.1.0',
 'c/b/b': '2.1.1'}

In [5]: flatten(normal_dict, reducer='path', inverse=True)
Out[5]:
{'0': 'a',
 '1.0': 'b/a',
 '1.1': 'b/b',
 '2.0': 'c/a',
 '2.1.0': 'c/b/a',
 '2.1.1': 'c/b/b'}

In [6]: def underscore_reducer(k1, k2):
   ...:     if k1 is None:
   ...:         return k2
   ...:     else:
   ...:         return k1 + "_" + k2
   ...:

In [7]: flatten(normal_dict, reducer=underscore_reducer)
Out[7]:
{'a': '0',
 'b_a': '1.0',
 'b_b': '1.1',
 'c_a': '2.0',
 'c_b_a': '2.1.0',
 'c_b_b': '2.1.1'}

If we have some iterable (e.g., list) in the dict, we will normally get this:

In [8]: flatten({'a': [1, 2, 3], 'b': 'c'})
Out[8]:
{('a',): [1, 2, 3],
 ('b',): 'c'}

If we want to use its indices as keys, then we can use the parameter enumerate_types:

In [9]: flatten({'a': [1, 2, 3], 'b': 'c'}, enumerate_types=(list,))
Out[9]:
{('a', 0): 1,
 ('a', 1): 2,
 ('a', 2): 3,
 ('b',): 'c'}

We can even flatten a list directly:

In [10]: flatten([1, 2, 3], enumerate_types=(list,))
Out[10]:
{(0,): 1,
 (1,): 2,
 (2,): 3}

If there is an empty dict in the values, by default, it will disappear after flattened:

In [4]: flatten({1: 2, 3: {}})
Out[4]: {(1,): 2}

We can keep the empty dict in the result using keep_empty_types=(dict,):

In [5]: flatten({1: 2, 3: {}}, keep_empty_types=(dict,))
Out[5]: {(1,): 2, (3,): {}}

Unflatten

def unflatten(d, splitter='tuple', inverse=False):
    """Unflatten dict-like object.

    Parameters
    ----------
    d : dict-like object
        The dict that will be unflattened.
    splitter : {'tuple', 'path', 'underscore', Callable}
        The key splitting method. If a Callable is given, the Callable will be
        used to split.
        'tuple': Use each element in the tuple key as the key of the unflattened dict.
        'path': Use `pathlib.Path.parts` to split keys.
        'underscore': Use underscores to split keys.
    inverse : bool
        Whether you want to invert the key and value before flattening.

    Returns
    -------
    unflattened_dict : dict
    """

Examples

In [1]: from flatten_dict import unflatten

In [2]: flat_dict = {
   ...:     ('a',): '0',
   ...:     ('b', 'a'): '1.0',
   ...:     ('b', 'b'): '1.1',
   ...:     ('c', 'a'): '2.0',
   ...:     ('c', 'b', 'a'): '2.1.0',
   ...:     ('c', 'b', 'b'): '2.1.1',
   ...: }

In [3]: unflatten(flat_dict)
Out[3]:
{'a': '0',
 'b': {'a': '1.0', 'b': '1.1'},
 'c': {'a': '2.0', 'b': {'a': '2.1.0', 'b': '2.1.1'}}}

In [4]: flat_dict = {
   ...:     'a': '0',
   ...:     'b/a': '1.0',
   ...:     'b/b': '1.1',
   ...:     'c/a': '2.0',
   ...:     'c/b/a': '2.1.0',
   ...:     'c/b/b': '2.1.1',
   ...: }

In [5]: unflatten(flat_dict, splitter='path')
Out[5]:
{'a': '0',
 'b': {'a': '1.0', 'b': '1.1'},
 'c': {'a': '2.0', 'b': {'a': '2.1.0', 'b': '2.1.1'}}}

In [6]: flat_dict = {
   ...:     '0': 'a',
   ...:     '1.0': 'b/a',
   ...:     '1.1': 'b/b',
   ...:     '2.0': 'c/a',
   ...:     '2.1.0': 'c/b/a',
   ...:     '2.1.1': 'c/b/b',
   ...: }

In [7]: unflatten(flat_dict, splitter='path', inverse=True)
Out[7]:
{'a': '0',
 'b': {'a': '1.0', 'b': '1.1'},
 'c': {'a': '2.0', 'b': {'a': '2.1.0', 'b': '2.1.1'}}}

In [8]: def underscore_splitter(flat_key):
   ...:     return flat_key.split("_")
   ...:

In [9]: flat_dict = {
   ...:     'a': '0',
   ...:     'b_a': '1.0',
   ...:     'b_b': '1.1',
   ...:     'c_a': '2.0',
   ...:     'c_b_a': '2.1.0',
   ...:     'c_b_b': '2.1.1',
   ...: }

In [10]: unflatten(flat_dict, splitter=underscore_splitter)
Out[10]:
{'a': '0',
 'b': {'a': '1.0', 'b': '1.1'},
 'c': {'a': '2.0', 'b': {'a': '2.1.0', 'b': '2.1.1'}}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flatten-dict-0.2.0.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

flatten_dict-0.2.0-py2.py3-none-any.whl (7.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file flatten-dict-0.2.0.tar.gz.

File metadata

  • Download URL: flatten-dict-0.2.0.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/0.12.17 CPython/3.7.4 Linux/4.15.0-62-generic

File hashes

Hashes for flatten-dict-0.2.0.tar.gz
Algorithm Hash digest
SHA256 077b1540233dd67094881feb58dc353db9f1fedf5faeb51e334fe0cea4fb2b89
MD5 901bc2576e7b43790f5e6b8b9d9ae0f6
BLAKE2b-256 ede3ef83c1a44ed70cc0d3b8b7e98b20b7628162999c20e8a928fea473f4e51a

See more details on using hashes here.

File details

Details for the file flatten_dict-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: flatten_dict-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/0.12.17 CPython/3.7.4 Linux/4.15.0-62-generic

File hashes

Hashes for flatten_dict-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 96c1ed23f05128478e30435bb54cc0a0d7d2bc638235d9ef6ca4ca221d924b3f
MD5 2e7763d96fb0a518c5032dcbad225e30
BLAKE2b-256 86e5f0e60863e6175ff631261183df6e1ee29509dafe860ae878b52879820dcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page