Skip to main content

Flattens everything - lists, tuples, dicts, np, pd... Option to protect iterables from being flattened

Project description

Update:

2022/09/30: fixed ProtectedDict, ProtectedList, ProtectedTuple, ProtectedSet - Sometimes didn't protect!

2022/09/30: Added doc strings

What does it do?

It flattens any iterable, it doesn't matter how deeply it is nested. If there are dicts in you iterable, it will only return the values. If you need the keys too, have a look at this package: flatten-any-dict-iterable-or-whatsoever · PyPI

Install it:

pip install flatten-everything

Import it:

from flatten_everything import flatten_everything, ProtectedDict,ProtectedList,ProtectedTuple,ProtectedSet

Use it:

{

    "id": "001",

    "company": "XYZ pvt ltd",

    "location": "London",

    "info": {

        "president": "Rakesh Kapoor",

        "contacts": {"email": "contact@xyz.com", "tel": "9876543210"},

        "onemorefortesting": {

            "name": {"name": "John", "age": "27", "sex": "Male"},

            "Peter2": {"name": "Marie", "age": "22", "sex": "Female"},

            "sdfsdf": {"name": "Luna", "age": "24", "sex": "Female"},

            "another_nested_something": [(2, 1), (3, 2), (1, 2), (1, 3), (1, 3), (2, 3), (1, 1), (3, 3), (2, 1), (1, 1), (1, 2), (3, 1), (3, 1), (3, 2), (1, 2), (1, 1), (3, 2), (2, 1), (1, 1), (3, 1)],

            "Peter": {"name": "Peter", "age": "29", "sex": "Male"},

        },

    },

},

{

    "id": "002",

    "company": "PQR Associates",

    "location": "Abu Dhabi",

    "info": {

        "president": "Neelam Subramaniyam",

        "contacts": {"email": "contact@pqr.com", "tel": "8876443210"},

    },

},

]



list(flatten_everything(data))



Result:

['001', 'XYZ pvt ltd', 'London', 'Rakesh Kapoor', 'contact@xyz.com', '9876543210', 'John', '27', 'Male', 'Marie', '22', 'Female', 'Luna', '24', 'Female', 2, 1, 3, 2, 1, 2, 1, 3, 1, 3, 2, 3, 1, 1, 3, 3, 2, 1, 1, 1, 1, 2, 3, 1, 3, 1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 3, 1, 'Peter', '29', 'Male', '002', 'PQR Associates', 'Abu Dhabi', 'Neelam Subramaniyam', 'contact@pqr.com', '8876443210']





    #If you want to protect iterables from being flattened, you can use:



data = [

{

"id": "001",

"company": "XYZ pvt ltd",'protect_test':ProtectedTuple((333,332,555)),

"location": "London",

"info": {

    "president": "Rakesh Kapoor",

    "contacts": {"email": "contact@xyz.com", "tel": "9876543210"}, 'onemorefortesting': {

        "name": {"name": "John", "age": "27", "sex": "Male"},

        "Peter2": {"name": "Marie", "age": "22", "sex": "Female"},

        "sdfsdf": {"name": "Luna", "age": "24", "sex": "Female"}, 'another_nested_something': ProtectedList([(2, 1), (3, 2), (1, 2), (1, 3), (1, 3), (2, 3), (1, 1), (3, 3), (2, 1), (1, 1), (1, 2), (3, 1), (3, 1), (3, 2), (1, 2), (1, 1), (3, 2), (2, 1), (1, 1), (3, 1)]),

        "Peter": ProtectedDict({"name": "Peter", "age": "29", "sex": "Male"}),

    },},},{"id": "002",

"company": "PQR Associates",

"location": "Abu Dhabi",

"info": {    "president": "Neelam Subramaniyam",

    "contacts": {"email": "contact@pqr.com", "tel": "8876443210"},},},]

print(list(flatten_everything(data)))

['001', 'XYZ pvt ltd', (333, 332, 555), 'London', 'Rakesh Kapoor', 'contact@xyz.com', '9876543210', 'John', '27', 'Male', 'Marie', '22', 'Female', 'Luna', '24', 'Female', [(2, 1), (3, 2), (1, 2), (1, 3), (1, 3), (2, 3), (1, 1), (3, 3), (2, 1), (1, 1), (1, 2), (3, 1), (3, 1), (3, 2), (1, 2), (1, 1), (3, 2), (2, 1), (1, 1), (3, 1)], {'name': 'Peter', 'age': '29', 'sex': 'Male'}, '002', 'PQR Associates', 'Abu Dhabi', 'Neelam Subramaniyam', 'contact@pqr.com', '8876443210']



#Parameters:

#    item: Any

#        Input iterable

#        Most of the time you will be using only this parameter.

#    forbidden: tuple

#        Data dtype which cannot be returned

#        (default=(list, tuple, set, frozenset))

#    allowed: tuple

#        Data dtype which can be returned

#        default (

#        str,

#        int,

#        float,

#        complex,

#        bool,

#        bytes,

#        type(None),

#        ProtectedTuple,  # Inherits from tuple but is protected, this is how you protected iterables

#        ProtectedList,  # same here

#        ProtectedDict, # same here

#        ProtectedSet, # same here

#        Tuppsub  #Inherit from tuple and exclude it from being flattened -

#

#        )

#    dict_variation: tuple

#        Due to recent changes, might not be necessary anymore, used to filter dict variations

#        (default =

#        (

#        "collections.defaultdict",

#        "collections.UserDict",

#        "collections.OrderedDict",

#        )

#Returns:

#    Generator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flatten_everything-0.41.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

flatten_everything-0.41-py3-none-any.whl (8.8 kB view details)

Uploaded Python 3

File details

Details for the file flatten_everything-0.41.tar.gz.

File metadata

  • Download URL: flatten_everything-0.41.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for flatten_everything-0.41.tar.gz
Algorithm Hash digest
SHA256 81918e9a1d0a7131f0bcab8fbb91a234728da6d536497befe51d5a6dbdcca507
MD5 56e1f042418c1d2d43e5286f75cad02c
BLAKE2b-256 84f7856d3633c3edefe1c6db9b066f22e525d2f1f689ae08be4d52153f1f2fbb

See more details on using hashes here.

File details

Details for the file flatten_everything-0.41-py3-none-any.whl.

File metadata

File hashes

Hashes for flatten_everything-0.41-py3-none-any.whl
Algorithm Hash digest
SHA256 9dd6623e230d8a79494d769aa5821186b0e9ff8da5bbae6e8043a8f69575b11a
MD5 28d21efc16df487f85c79a932920d7f3
BLAKE2b-256 d04ae37e9657d07cbb8d876b0a9d1745080cbe8491a502f3bde1cc2fecfd2037

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page