Skip to main content

Databricks PySpark module to flatten nested spark dataframes, basically struct and array of struct till the specified level

Project description

Flatten Pyspark dataframe

This module flattens a given spark dataframe

All struct and array of struct columns will be flattened

Sample input pyspark dataframe
data = [
        ((("A","James"),None,"Smith"),"OH","M",("F","Mike")),
        ((("B","Anna"),"Rose",""),"NY","F",("E","Jen")),
        ((("C","Julia"),"","Williams"),"OH","F",("D","Maria")),
        ((("D","Maria"),"Anne","Jones"),"NY","M",("C","Julia")),
        ((("E","Jen"),"Mary","Brown"),"NY","M",("B","Anna")),
        ((("F","Mike"),"Mary","Williams"),"OH","M",("A","James"))
        ]

from pyspark.sql.types import StructType,StructField, StringType        
schema = StructType([
    StructField('name', StructType([
         StructField('firstname', StructType([
         StructField('initial', StringType(), True),
         StructField('actualname', StringType(), True)])),
         StructField('middlename', StringType(), True),
         StructField('lastname', StringType(), True)
         ])),
     StructField('state', StringType(), True),
     StructField('gender', StringType(), True),
	 StructField('country', StructType([
         StructField('city', StringType(), True),
         StructField('street', StringType(), True)])),
     ])
dfn = spark.createDataFrame(data = data, schema = schema)

import flatten_spark_dataframe
flattened_dataframe = flatten_spark_dataframe.flatten(dfn)

Output text

flat_cols: ['state AS state', 'gender AS gender']
nested_cols: ['name.`firstname` AS name_firstname', 'name.`middlename` AS name_middlename', 'name.`lastname` AS name_lastname', 'country.`city` AS country_city', 'country.`street` AS country_street']
array_cols: []
---------- Nested level: 1  -------------------
flat_cols: ['state AS state', 'gender AS gender', 'name_middlename AS name_middlename', 'name_lastname AS name_lastname', 'country_city AS country_city', 'country_street AS country_street']
nested_cols: ['name_firstname.`initial` AS name_firstname_initial', 'name_firstname.`actualname` AS name_firstname_actualname']
array_cols: []
---------- Nested level: 2  -------------------
flat_cols: ['state AS state', 'gender AS gender', 'name_middlename AS name_middlename', 'name_lastname AS name_lastname', 'country_city AS country_city', 'country_street AS country_street', 'name_firstname_initial AS name_firstname_initial', 'name_firstname_actualname AS name_firstname_actualname']
nested_cols: []
array_cols: []
flattened_dataframe.take(10)
[Row(state='OH', gender='M', name_middlename=None, name_lastname='Smith', country_city='F', country_street='Mike', name_firstname_initial='A', name_firstname_actualname='James'),
 Row(state='NY', gender='F', name_middlename='Rose', name_lastname='', country_city='E', country_street='Jen', name_firstname_initial='B', name_firstname_actualname='Anna'),
 Row(state='OH', gender='F', name_middlename='', name_lastname='Williams', country_city='D', country_street='Maria', name_firstname_initial='C', name_firstname_actualname='Julia'),
 Row(state='NY', gender='M', name_middlename='Anne', name_lastname='Jones', country_city='C', country_street='Julia', name_firstname_initial='D', name_firstname_actualname='Maria'),
 Row(state='NY', gender='M', name_middlename='Mary', name_lastname='Brown', country_city='B', country_street='Anna', name_firstname_initial='E', name_firstname_actualname='Jen'),
 Row(state='OH', gender='M', name_middlename='Mary', name_lastname='Williams', country_city='A', country_street='James', name_firstname_initial='F', name_firstname_actualname='Mike')]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flatten_spark_dataframe-0.0.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

flatten_spark_dataframe-0.0.1-py3-none-any.whl (4.7 kB view details)

Uploaded Python 3

File details

Details for the file flatten_spark_dataframe-0.0.1.tar.gz.

File metadata

File hashes

Hashes for flatten_spark_dataframe-0.0.1.tar.gz
Algorithm Hash digest
SHA256 23bb875ae66c55f4b5d277d3071b729f9762ff10a52e6c1d5636ccfbbd46f971
MD5 1964fedc520780cdbfb42fb88851465f
BLAKE2b-256 314bbe676eb2f3d08dcbc93c80a51b64508074fc7d29c9b150c72f06a73463bd

See more details on using hashes here.

File details

Details for the file flatten_spark_dataframe-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for flatten_spark_dataframe-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1567877e3b74eb365ed074ec74eacd265eeb679e635c97f11d5ac7b5a5785205
MD5 ff57d9947308791ba575e9e0a4063820
BLAKE2b-256 dc909c59d026afe44fe463078fdd3c6afc944f3dc70545361d33efa9f25c7916

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page