Skip to main content

Opinionated JSON to CSV converter

Project description

Full Documentation

Introduction

An opinionated JSON to CSV/XLSX/SQLITE/PARQUET converter which tries to make a useful relational output for data analysis.

Web playgroud of CSV/XLSX conversions

Rationale

When receiving a JSON file where the structure is deeply nested or not well specified, it is hard to determine what the data contains. Also, even after knowing the JSON structure, it requires a lot of time to work out how to flatten the JSON into a relational structure to do data analysis on and to be part of a data pipeline.

Flatterer aims to be the first tool to go to when faced with the above problem. It may not be the tool that you end up using to flatten the JSON in your data pipeline, as hand written flattening may be required, but it could be. It has many benefits over most hand written approaches:

  • It is fast, written in rust but with python bindings for ease of use. It can be 10x faster than hand written python flattening.
  • Memory efficient. Uses a custom streaming JSON parser to mean that long list of objects nested with the JSON will be streamed, so not much data needs to be loaded into memory at once.
  • Fast memory efficient output to CSV/XLSX/SQLITE/PARQUET
  • Uses best practice that has been learnt from flattening JSON countless times, such as generating keys to link one-to-many tables to their parents.

Install

pip install flatterer

Flatterer requires Python 3.6 or greater. It is written as a python extension in Rust but has binaries (wheels) for linux (x64), macos (x64 and universal) and windows (x64, x86). On other platforms a rust toolchain will need to be installed.

Example JSON

Say you have a JSON data like this named games.json:

[
  {
    "id": 1,
    "title": "A Game",
    "releaseDate": "2015-01-01",
    "platforms": [
      {"name":"Xbox"},
      {"name":"Playstation"}
    ],
    "rating": {
      "code": "E",
      "name": "Everyone"
    }
  },
  {
    "id": 2,
    "title": "B Game",
    "releaseDate": "2016-01-01",
    "platforms": [
      {"name":"PC"}
    ],
    "rating": {
      "code": "E",
      "name": "Everyone"
    }
  }
]

Running Flatterer

Run the above file with flatterer.

flatterer games.json games_dir

Output Files

By running the above you will get the following files:

tree games_dir

games_dir/
├── csv
│   ├── games.csv
│   └── platforms.csv
├── datapackage.json
├── fields.csv
└── ...

Main Table

games.csv contains:

_link _link_games id rating_code rating_name releaseDate title
1 1 1 E Everyone 2015-01-01 A Game
2 2 2 E Everyone 2016-01-01 B Game

Special column _link is generated. _link is the primary key there unique per game.

Also the rating sub-object is promoted to this table it has a one-to-one relationship with games. Sub-object properties are separated by '_'.

One To Many Table

platforms is an array so is a one-to-many with games therefore needs its own table: platforms.csv contains:

_link _link_games name
1.platforms.0 1 Xbox
1.platforms.1 1 Playstation
2.platforms.0 2 PC

Link Fields

_link is the primary key for the platforms table too. Every table except games table, contains a _link_games field to easily join to the main games table.

If there was a sub-array of platforms then that would have _link, _link_games and _link_platforms fields.

To generalize this the _link__<table_name> fields joins to the _link field of <table_name> i.e the _link__<table_name> are the foreign keys refrencing <table_name>._link.

Fields CSV

fields.csv contains some metadata about the output tables:

table_name field_name field_type count field_title
platforms _link text 3 _link
platforms _link_games text 3 _link_games
platforms name text 3 name
games _link text 2 _link
games id number 2 id
games rating_code text 2 rating_code
games rating_name text 2 rating_name
games releaseDate date 2 releaseDate
games title text 2 title

The field_type column contains a type guess useful for inserting into a database. The field_title is the column heading in the CSV file or XLSX tab, which is initally the same as the field_name. After editing this file then you can rerun the transform:

flatterer games.json new_games_dir -f myfields.csv --only-fields

This can be useful for renameing columns, rearranging the field order or if you want to remove some fields the --only-fields flag will only include the fields in the edited file.

datapackage.json contains metadata in the Tabular Datapackge Spec

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flatterer-0.19.16.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

flatterer-0.19.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp312-none-win_amd64.whl (17.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

flatterer-0.19.16-cp312-none-win32.whl (15.7 MB view details)

Uploaded CPython 3.12 Windows x86

flatterer-0.19.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp312-cp312-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

flatterer-0.19.16-cp311-none-win_amd64.whl (17.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

flatterer-0.19.16-cp311-none-win32.whl (15.7 MB view details)

Uploaded CPython 3.11 Windows x86

flatterer-0.19.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp311-cp311-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

flatterer-0.19.16-cp310-none-win_amd64.whl (17.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

flatterer-0.19.16-cp310-none-win32.whl (15.7 MB view details)

Uploaded CPython 3.10 Windows x86

flatterer-0.19.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp310-cp310-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

flatterer-0.19.16-cp39-none-win_amd64.whl (17.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

flatterer-0.19.16-cp39-none-win32.whl (15.7 MB view details)

Uploaded CPython 3.9 Windows x86

flatterer-0.19.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp39-cp39-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

flatterer-0.19.16-cp38-none-win_amd64.whl (17.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

flatterer-0.19.16-cp38-none-win32.whl (15.7 MB view details)

Uploaded CPython 3.8 Windows x86

flatterer-0.19.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp38-cp38-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

flatterer-0.19.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

flatterer-0.19.16-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (33.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

flatterer-0.19.16-cp37-cp37m-macosx_10_7_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file flatterer-0.19.16.tar.gz.

File metadata

  • Download URL: flatterer-0.19.16.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16.tar.gz
Algorithm Hash digest
SHA256 c3b5e87c5aa6860f9d83c0049fb9dd0b19c96c8eba18b3944470ef3665dcfd73
MD5 4c0636968eb0614b563b9d3312ca980c
BLAKE2b-256 16c621d7b2dd65171bbe944ed42bb247db4fb7a0de382e075713e808edb0fb91

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d504640df18bcb2159119391cbe24786e2c9a75f77087aa783a8eeafbda670fa
MD5 ced70f7ad328581f424f632f60470cd9
BLAKE2b-256 6cd436b48da7c67b8c2b390b6a0a2f02ed9a13943bd024787edf8fa0a22b0feb

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37fb666fc6079040ed41f5eace90eff76753f5081d21b90667a877d163bf0bf0
MD5 43d924dccd17bc59839df72d0c08e541
BLAKE2b-256 a728cfed9ad4cc4a885964bc72ce9d7899d61c0ea0b67bb9c8f037c20a529ee9

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e5b3c09da11cf90ba8f79f0a1047efa442c5d359fba86ba4f4bcc274f5ba37c
MD5 29cc9795318e42c3c39e80ebd4432b0a
BLAKE2b-256 d9038dc20984d0fafc42a71afddae3c16e85d5b247b5f05abdc9bce9ee809866

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0592f382d04ade09ee5e3f2b47eaa3fa9f117f94fc01f0e8bc01b718194fde2
MD5 dd2b0b4772be1c153fb226641341e184
BLAKE2b-256 b873d5eb495c9c1f15138980326bf2b52fc796b1bee7100522b97c47a9c68ac9

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 ad4b460e8c32cc3e290fd705edded48dafe2a0b34fb7c24b135d509e028a9f05
MD5 016ec7791754088141e98de39ca5a8e8
BLAKE2b-256 f6221b5b5ce29c9796f3ba16f53e743cbcf6759ca4d0237aec67f58724532c08

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp312-none-win32.whl.

File metadata

  • Download URL: flatterer-0.19.16-cp312-none-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16-cp312-none-win32.whl
Algorithm Hash digest
SHA256 b1caa79453741a4d084b005d61c2338c84fcf1dae6ef72e79f862ee33bee06ba
MD5 314d98192774e739caa14dd25bdb8734
BLAKE2b-256 63d18f869eecc3626b448e33058f1da6b33d4be08487970a3c5a1d285c6bd7b3

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d55ff3b96e354cf35d4ff38f0b290dae7876e7407bf1d409bb244a56f01c76f1
MD5 a8a93305968b7e42f39a142f99a81f89
BLAKE2b-256 4fcc19099d2ad57b3ae6d74ca8570a20305cd39586b5ffa9552cb67fe59d130b

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 826d4b35774b4449daaebed2d5bcc6185093aed0d152925d3b5adf92960e06c6
MD5 3ec95580736c43117c0d8c2335a5e187
BLAKE2b-256 2c3e1de362f83900861180a24514935b991ab6f2affc86f0b609336349ddec7a

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ccb6ffa2f9e87f2b588c74be56fbc3956ecbef6a687915d03f1cf39d30f753f5
MD5 388b4982618ea0a2c780fbe974d0b3a5
BLAKE2b-256 a3bfbb9462fbc483c9253137609595fe43f7275576a87c7ff45ef070e641d1f3

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 fa44e24bfac5ad7a96dea6832bbf69f0563e36fb5394307cb852010c836c0678
MD5 b1cabcc4c69423ba048b75323e347ad1
BLAKE2b-256 58359161c5e0fb2a130b4fa03135e6bb5bd5863d23ea7eb89bcbab09424834eb

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp311-none-win32.whl.

File metadata

  • Download URL: flatterer-0.19.16-cp311-none-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16-cp311-none-win32.whl
Algorithm Hash digest
SHA256 1e5a43e9ab606721b1c16b95e36468926aa54b7bfd41773418ebc8594e4a68d5
MD5 ea6de0f7402a5e412c360e6677284877
BLAKE2b-256 014f52b6a7d9a891c4774407326b637207fa2bf9c8b2d8cdfdd95b7156f2412c

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60f2a3fa329b64bdf16d756008c13d17092855bc33c4eea10bbb2957e5f58938
MD5 8f324e565e74165a59f25dc89c3bdc59
BLAKE2b-256 acaa8382219fc9f6079d218f258717d9d6531d310e53177ce8425d58fa7dcde3

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 264ce9d1bfd268fd9e31b479c949c6636acaa1b814e4178423b3cc2e856588a4
MD5 879e5e1eeae15bc8ac1009b6fccf9e31
BLAKE2b-256 f0b71a4f150380dfb6b942862117f411378cec476b2e1ae087ed016a4c8908f1

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c810b00c9bc505af2b9d9d25c90fe0b7ff33b2977d6b8dc43255d0e68d2d6180
MD5 b4b83331e4d401e02efcf71143e4291e
BLAKE2b-256 ad0e2cd4ca53d2759e5f7bc1613ea3db0d7b6b76413c0ccc805afa81af975d04

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 7137a822bd273d98043c555eddd69c8b2bd634fca1d8a163e4b144c45b3c7c5d
MD5 a934fac2fca1aaee734a9e945706cb67
BLAKE2b-256 46cd6ae4353a11a3bf2306500a6a703766c7d6c7a829d66f61490dba2571f5f1

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp310-none-win32.whl.

File metadata

  • Download URL: flatterer-0.19.16-cp310-none-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16-cp310-none-win32.whl
Algorithm Hash digest
SHA256 fa4fb3ebfe3ad556e595ef4da9aa71ec01a9009617daebd81f3b7e8ca11a9bfc
MD5 dc5b86b9ccb90dafc3af6f1f06b6b892
BLAKE2b-256 946b8353c3478879821a0bc0a9f8cc9b857280103fc82c0aefb11a269776f525

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90c431c3e57ce996f1793f7e1e67f7f0abbad97ac157cb4962963f624d0a2224
MD5 183af0e52335ed473b8cd5cffda3bdf3
BLAKE2b-256 a5a23efbd10bace3581ba814bdd2a862b055ab93037e3339e9511cf235d84e92

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c904a4735029020f188b31b49852904bb8032cf3e47bf11c1d10df8cfadeca40
MD5 00ef213c7ebc853c0adbb72f1c17cd5b
BLAKE2b-256 2461355d4b57dd1c22fc80e391e65b212fb4a7d36dffd711338cdb20818da6ef

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2c13883a57c10624774df59bb3f484d620d7cad01a08f27e1184782d06a6bc76
MD5 5c7f777c0d3b061eda334922390be51e
BLAKE2b-256 2d7a8759a422cd72e14e4f4b95776e29777074af718e3bf0b57c503857b3dc53

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 814ac01ca639c2157798439a8ec98a398bee41d1eb70c2a26d3e80a030155c49
MD5 dae5895aa76fe5221fc314407bdb959f
BLAKE2b-256 8dbcda4f0ce6d26caa97a4689650cb421f6f16ec7396ac27d8b8fbd49ee1f93a

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp39-none-win32.whl.

File metadata

  • Download URL: flatterer-0.19.16-cp39-none-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16-cp39-none-win32.whl
Algorithm Hash digest
SHA256 29177bc29c34ee28726f73609b6a53b25630b72f859fe97bd87061358415f446
MD5 6f09db7ff8e8c61947cdb743b674ead1
BLAKE2b-256 603bb12cc7101bfe99b4e38833c5eac4a9819e245e9bd0e7118bd799f0640e6c

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dce633eac9d8a615a1df752840d132e665064962bfacde744d6c4426d9b875f9
MD5 ebd1e2ea423240e2cfcc5461685d2998
BLAKE2b-256 45cbce8c973499f422f801890c328182126b43e58e68d4b50daaaa5d4d0db9fd

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c1808b0b4c44fe0ca557d6c13ce99497ba033ca94a5f9304d8d7008548835f22
MD5 7e2b3a12eeb76ee62030dabdd8fd61da
BLAKE2b-256 94a65af22e49770cd444b61ddc652e4cc20b882bba5690def53e043e2e2d5d95

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9124ec26c89b84a8cb637a3fb17b910321511c4f32fddd544e0c360d1e85d1e1
MD5 32ecdc9015dfb3e767629ebb7f568c6e
BLAKE2b-256 178ed97e9340723e28c3c932ab61212d06db2e68b1881af1da698b176da6045d

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 abfb82c61f3c7f84ef0fc13d92c772ee4e2d72e53c08e0ee13f2ce578001ed9b
MD5 159553ffc38727f445f46f7f9a687a3a
BLAKE2b-256 21e9017306dc79e1d14162b1a0f45a60e905d79048efde54fe3fcd4433401dde

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp38-none-win32.whl.

File metadata

  • Download URL: flatterer-0.19.16-cp38-none-win32.whl
  • Upload date:
  • Size: 15.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for flatterer-0.19.16-cp38-none-win32.whl
Algorithm Hash digest
SHA256 854ec732af108bbf016e2461606d9cf3ccbbcfc36b5350e91d061dcb62a1788c
MD5 d6efbca7e8cf06a9b216afb99d589c6c
BLAKE2b-256 cb5e4eacd1d4c62021f409e1df0253fda2621a69647e43721b4b7f5d90ab350f

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2a703b194e323d0b7b4080e0c94b2bf1436f579eece8fd1baadcbaba56d0dc6
MD5 96b896918076d66266dcbd62859486a3
BLAKE2b-256 35ec62405121a59e6965af1bea6118c8f56966a78a9f7b73970a73817fdd407c

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0a76595b998054cc471acfc85710335a40850c41295638d5ddc2cc3dfa1c9eb
MD5 81c1959e5902038739b931752cdabd57
BLAKE2b-256 5f3e293d3bb91f66fbecb5da38a7d1bb1721a03466cd24cecff0161964d8a69a

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 faeef92e1f0a2ef27425b920b36641cfe98e590bcf678fa4f214feedc05ca680
MD5 583e4a34b48956c0f78a2938702b87a6
BLAKE2b-256 58ec8bede2cb656300850f92e822e0054848be1fde2cfe772c7bad1c1ee3b2b4

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d30a21f58afc7265faaf168123ec6c5b9ed845bd294992955fc5932bf3cf011
MD5 1695c98c186d0dbfea73afb9625b96f4
BLAKE2b-256 ac59eec220860653969fed8fde7cf1d89ffe36a9b0aa2fee78b7515a3f4b18fe

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c553936ac0c1ae3932e04bad9d51d824234eb45f33d3c9275f3a686f001dac01
MD5 1a9a0d78b5069ec81a40d71342f3189f
BLAKE2b-256 a5679e4a1fd7370e8eb449dd3576ab748009ee9867275ccaede9cbcb771a0dbc

See more details on using hashes here.

Provenance

File details

Details for the file flatterer-0.19.16-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for flatterer-0.19.16-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 31787e03c8b28374ababaff8776bae3aae69b76323e4bd418f1b6901dba027ba
MD5 7e2264600fa91d73ef52f3dc99b5c833
BLAKE2b-256 1e65ffe40f039c23b2fd34c8a35048ba2a5ef5cba2ee69739641ec261015efa9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page