Skip to main content

A high-performance dictionary database.

Project description


🗲 FlaxKV

A high-performance dictionary database.

PyPI version License Release (latest by date) tests pypi downloads

English | 简体中文


The flaxkv provides an interface very similar to a dictionary for interacting with high-performance key-value databases. More importantly, as a persistent database, it offers performance close to that of native dictionaries (in-memory access).
You can use it just like a Python dictionary without having to worry about blocking your user process when operating the database at any time.


Key Features

  • Always Up-to-date, Never Blocking: It was designed from the ground up to ensure that no write operations block the user process, while users can always read the most recently written data.

  • Ease of Use: Interacting with the database feels just like using a Python dictionary! You don't even have to worry about resource release.

  • Buffered Writing: Data is buffered and scheduled for write to the database, reducing the overhead of frequent database writes.

  • High-Performance Database Backend: Uses the high-performance key-value database LMDB as its default backend.

  • Atomic Operations: Ensures that write operations are atomic, safeguarding data integrity.

  • Thread-Safety: Employs only necessary locks to ensure safe concurrent access while balancing performance.

TODO

  • Client-Server Architecture
  • Benchmark

Quick Start

Installation

pip install flaxkv 
# Or pip install flaxkv[server]

Usage

from flaxkv import dictdb
import numpy as np

db = dictdb('test_db')
# or run server `flaxkv run --port 8000`, then:
# db = dictdb('test_db', root_path_or_url='http://localhost:8000')

db[1] = 1
db[1.1] = 1 / 3
db['key'] = 'value'
db['a dict'] = {'a': 1, 'b': [1, 2, 3]}
db['a list'] = [1, 2, 3, {'a': 1}]
db[(1, 2, 3)] = [1, 2, 3]
db['numpy array'] = np.random.randn(100, 100)

db.setdefault('key', 'value_2')
assert db['key'] == 'value'

db.update({"key1": "value1", "key2": "value2"})

assert 'key2' in db

db.pop("key1")
assert 'key1' not in db

for key, value in db.items():
    print(key, value)

print(len(db))

Tips

  • flaxkv provides performance close to native dictionary (in-memory) access as a persistent database! (There should be a benchmark here)
  • You may have noticed that in the previous example code, db.close() was not used to release resources! Because all this will be automatically handled by flaxkv. Of course, you can also manually call db.close() to immediately release resources.
  • Since flaxkv saves data by buffered writing, this feature of delayed writing may not write data to the disk in time in some scenarios (such as in Jupyter), in this case, you can use db.write_immediately() to immediately trigger a write operation.

Benchmark

todo

Use Cases

  • Key-Value Structure: Used to save simple key-value structure data.
  • High-Frequency Writing: Very suitable for scenarios that require high-frequency insertion/update of data.
  • Machine Learning: flaxkv is very suitable for saving various large datasets of embeddings, images, texts, and other key-value structures in machine learning.

Citation

If FlaxKV has been helpful to your research, please cite:

@misc{flaxkv,
    title={FlaxKV: An Easy-to-use and High Performance Key-Value Database Solution},
    author={K.Y},
    howpublished = {\url{https://github.com/KenyonY/flaxkv}},
    year={2023}
}

Contributions

Feel free to make contributions to this module by submitting pull requests or raising issues in the repository.

License

FlaxKV is licensed under the Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flaxkv-0.2.0a0.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

flaxkv-0.2.0a0-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file flaxkv-0.2.0a0.tar.gz.

File metadata

  • Download URL: flaxkv-0.2.0a0.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for flaxkv-0.2.0a0.tar.gz
Algorithm Hash digest
SHA256 5ba4d8fbb89904ba912fe1d8d80e9e15a3fe5bed4786f139e1156eae454a04eb
MD5 7a6094cef03c86f761a4aea01d6e1c6b
BLAKE2b-256 b0f732fe7f42078f67aaeaf74e0bb186d796a936d9d527195f5b92347d701fe6

See more details on using hashes here.

File details

Details for the file flaxkv-0.2.0a0-py3-none-any.whl.

File metadata

  • Download URL: flaxkv-0.2.0a0-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for flaxkv-0.2.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 a6295f95c2f20f2dc48b929273c1c080fe1f24fa9f3b562e712c3f6c1c0e08f4
MD5 d1a10efa21cffdaa37151329b31b6334
BLAKE2b-256 8448a262287c4a0991af301cf1094280523e2db00ba469159c27b767d24427c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page