Skip to main content

Flexible datetime handling for Python

Project description

FlexDateTime

FlexDateTime is a Python class that provides flexible and enhanced functionality for handling and comparing dates and times using the Arrow library and Pydantic.

Description

The FlexDateTime class allows you to:

  • Parse dates and times from strings with various formats
  • Mask specific components (year, month, day, hour, minute, second) for comparison purposes
  • Serialize and deserialize dates and times with Pydantic V2
  • Easily compare dates and times with masked components

Installation

To use FlexDateTime, you need to install the dependencies: arrow and pydantic.

pip install flexible-datetime

Usage

Creating an Instance

You can create a FlexDateTime instance by providing a date string and an optional input format.

from flexdatetime import FlexDateTime

# Create an instance with the current utc time
current_time = FlexDateTime()

# Create an instance from a date string
date_time = FlexDateTime.from_str("2023-06-28T15:30:00")

# Create an instance from a date string with only year month day
date_time = FlexDateTime.from_str("2023-06-28")

# Create an instance from a date string with only year and moth
date_time = FlexDateTime.from_str("2023-06")

# Create an instance from a date string with only year
date_time = FlexDateTime.from_str("2023")

Masking Components

Masking is automatically determined at initialization, but can also be explicitly set.

Mask specific components of the date/time to exclude them from comparisons.

# Mask the year and month
date_time.apply_mask(year=True, month=True)

Comparing Instances

You can compare FlexDateTime instances while respecting the mask.

date_time1 = FlexDateTime.from_str("2023-01-01T15:30:00")
date_time2 = FlexDateTime.from_str("2024-01-01")
date_time1.apply_mask(day=True, hour=True, second=True)
# Compare the two instances
print(date_time1 == date_time2)  # True, because only the year, month, day have not been masked

String Representation

Get the string representation of the date/time considering the mask.

date_time = FlexDateTime.from_str("2000-01")
print(str(date_time))  # Output: "2000-01"

Example

Here's a complete example demonstrating the usage of FlexDateTime:

from flexdatetime import FlexDateTime

# Create an instance from a date string
date_time1 = FlexDateTime.from_str("2000-01-01")
date_time2 = FlexDateTime.from_str("2024-01-01")

# Mask the year
date_time2.apply_mask(year=True)

# Compare the two instances
print(date_time == another_date_time)  # True, because the year is masked

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flexible_datetime-0.3.1.tar.gz (8.6 kB view details)

Uploaded Source

Built Distribution

flexible_datetime-0.3.1-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file flexible_datetime-0.3.1.tar.gz.

File metadata

  • Download URL: flexible_datetime-0.3.1.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.9 Darwin/23.0.0

File hashes

Hashes for flexible_datetime-0.3.1.tar.gz
Algorithm Hash digest
SHA256 3b7e35f1a7d7d433424736f48e7be8c592bdc26b2e21f2d20b1899eb62b9f834
MD5 389959ae7e648a9f944363859abd4244
BLAKE2b-256 90aef8651e7df7852e2493646b81e63529a499dd906b7e9fc1118f82449d2d6e

See more details on using hashes here.

File details

Details for the file flexible_datetime-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for flexible_datetime-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d40aee16a6cdb7c11a1f6719e9afe5d69d5f63f7a9637edc7b3e9e81d0634ed7
MD5 f07d60425807dcec112c040039c6b599
BLAKE2b-256 b529c704b90f2f09a97c99019e20091485b3dbee3118adaa13795994961dfad4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page