Skip to main content

FragPipe Limited-Proteolysis Processor (FLiPPR) is modular, fast, and easy-to-use data processing tool for LiP-MS & LFQ-based experiments analyzed in FragPipe

Project description

FLiPPR Logo

Table of Contents

Overview

FLiPPR (FragPipe Limited-Proteolysis Processor) is modular, fast, and easy-to-use data processing tool for LiP-MS & LFQ-based experiments analyzed in FragPipe.

FLiPPR is:

  • Super Fast: FLiPPR utilizes Polars in the back-end to ensure all CPU cores contribute to your data processing.
  • Convinent to Use: FragPipe produces standarized outputs, FLiPPR takes full advantage of this feat and integrates seemlessly with any FragPipe LFQ-MBR anaylsis.
  • Flexible and Expandable: Experiments introduce unique and novel variables, FLiPPR ensures capatibility with all experimental setups and gives you full control of the data processing pipeline.

Support

FLiPPR has been tested with Python 3.10 – 3.12 To learn more about how FLiPPR can help you analyze your LiP-MS or LFQ data, head over to the FLiPPR docs

Installation

    # Initial install
    python -m pip install flippr

    # Update to latest release
    python -m pip install -U flippr

Usage

  1. Start a Study
import flippr as fp
from flippr import Study

# Pass the FragPipe output directory path from your LiP-MS experiment
study = Study(lip = "path/to/lip")

# Include protein normalization factors from a Trypsin-only experiment
study = Study(lip = "path/to/lip", trp = "path/to/trp")

# Including the protein FASTA file will add metadata and remove contaminants
study = Study(lip = "path/to/lip", trp = "path/to/trp", fasta = "UP000000625_83333.fasta")
  1. View the experimental sample annotations
print(study.samples)
# >>> { 'LiP': {'Native', 'Refolded_001_min', 'Refolded_005_min', 'Refolded_120_min'}, 'TrP': {'Refolded', 'Native'}}
  1. Add an experimental process
# Process without normalization
study.add_process(1, "Native", "Refolded_001_min", 3)

# Process with normalizations (only when `trp` is included in the study)
study.add_process(5, "Native", "Refolded_005_min", 3, "Native", "Refolded", 3)

# Multiple processes within one study
study.add_process(1, "Native", "Refolded_001_min", 3, "Native", "Refolded", 3)
study.add_process(5, "Native", "Refolded_005_min", 3, "Native", "Refolded", 3)
study.add_process(120, "Native", "Refolded_120_min", 3, "Native", "Refolded", 3)
  1. Run your study
# Running a study returns results and populates the `Study().results` dictionary
results = study.run()
# >>> {1: <flippr.Results>, 5: <flippr.Results>, 120: <flippr.Results>}

# Change analysis parameters within `fp.rcParams` before running for more control
fp.rcParams["protein.fc_sig_thresh"] = 2.0
results = study.run()
  1. View or save your results as Polars DataFrames
# 1 min time point results
results_1_min = results[1]

# View all ions included in the 1 min experimental process
results_1_min.ion

# View higher-order results
results_1_min.modified_peptide
results_1_min.peptide
results_1_min.cut_site

# View protein-level summary of all data
results_1_min.protein_summary
Protein ID Protein Entry Name Gene ... No. of Valid Cut Sites No. of Significant Cut Sites No. of Significant Cut Sites
P00350 sp|P00350|6PGD_ECOLI 6PGD_ECOLI gnd ... 111 40 50
P00363 sp|P00363|FRDA_ECOLI FRDA_ECOLI frdA ... 15 2 2
Q57261 sp|Q57261|TRUD_ECOLI TRUD_ECOLI truD ... 24 7 8
Q59385 sp|Q59385|COPA_ECOLI COPA_ECOLI copA ... 13 2 1
Q7DFV3 sp|Q7DFV3|YMGG_ECOLI YMGG_ECOLI ymgG ... 4 2 4
Q93K97 sp|Q93K97|ADPP_ECOLI ADPP_ECOLI nudF ... 9 4 5

License

This project is licensed under the CC BY-NC-ND 4.0 License. Feel free to use the code according to the terms specified in the license. This project is licensed under the CC BY-NC-ND 4.0 License. Feel free to use the code according to the terms specified in the license.

Thank you for your interest in FLiPPR! If you encounter any issues or have suggestions, please open an issue. We appreciate your feedback!

Citation

If you found this work helpful in your research, please cite us!

FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe
Edgar Manriquez-Sandoval, Joy Brewer, Gabriela Lule, Samanta Lopez, and Stephen D. Fried
Journal of Proteome Research
DOI: 10.1021/acs.jproteome.3c00887

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flippr-0.1.5.tar.gz (110.4 kB view details)

Uploaded Source

Built Distribution

flippr-0.1.5-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file flippr-0.1.5.tar.gz.

File metadata

  • Download URL: flippr-0.1.5.tar.gz
  • Upload date:
  • Size: 110.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.4

File hashes

Hashes for flippr-0.1.5.tar.gz
Algorithm Hash digest
SHA256 95e5f993df3d8c60bc2ddf377255419d37fb791cfb6199e2f946915e47e54b97
MD5 e7fc2a81d2cac8a0417f350ee05e27fb
BLAKE2b-256 da4618ce9e827f07ae9c7536ee95639ffb209dbf1401194bab79cabcf7276905

See more details on using hashes here.

File details

Details for the file flippr-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: flippr-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.4

File hashes

Hashes for flippr-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c1d8c1a30607f65bc1b93d6f2ad2ee31af4327ef95e9a603b8ccc603d2b1e6ab
MD5 c4ddef08a42a2680e8e9926df89711e2
BLAKE2b-256 c74ff0bf68f7dd5a33eefaf467d359b1489d7f8644022e703262748450be966e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page