Skip to main content

Flight scheduling optimization using Genetic Algorithm variants and other algorithms.

Project description

Fliscopt

Stars Forks License Issues made-with-python Open Source Love png1 Maintenance PRs Welcome PyPI Tweet Say Thanks!

image

FLIght SCheduling OPTimization ๐Ÿ›ซ or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete domain. The library supports plotting, asynchronous multiprocessing, and unimodal optimization benchmarks. The following repository contains code for the paper "XYZ". The experiments were performed in PyPy3.7 and CPython 3.8.10.

Following algorithms have been implemented and test as of date:

Algorithms:

  • Hill Climbing
  • Random Search
  • Simulated Annealing
  • Genetic Algorithm
  • Genetic Algorithm in Reverse Mode
  • Genetic Algorithm with Reversals
  • Genetic Algorithm with Random Search as a Reversal/Reverse Process
  • Iterated Chaining

Getting Started

Install the library using pip:

pip install fliscopt

Or for unreleased versions:

pip install 'git+https://github.com/Agrover112/fliscopt/fliscopt@branchname

Or for development:

git clone https://github.com/Agrover112/fliscopt.git
cd fliscopt
pip install .

Download the flights.txt file from the following link and add it to a data/ directory within your parent directory.

Checkout out the examples in the examples directory or run in Google Collab

For PyPy users

The instructions for setup are mentioned in the setup directory. Alternatively, you can set up using this bash script. A requirements file is provided just in case. The script creates and activates a PyPy Conda environment with all libraries and dependencies.

cd ./setup.sh
source setup.sh

Then install using:

pypy -mpip install fliscopt

Testing

After adding any new algorithm, you can run the tests to check if the code is working properly.

./run_tests.sh

Results

Experimental Results

Results were compared by using the same seeds. The following table shows the results of the experiments. (Will be shortly added)

Accessing results

After running the experiments, the results are stored in the results directory. The results are stored in the following format in subdirectories:

.
โ”œโ”€โ”€ multi_proc
โ”‚   โ”œโ”€โ”€ ackley_N2
โ”‚   โ”‚   โ”œโ”€โ”€ genetic_algorithm_results.csv
โ”‚   โ”‚   โ”œโ”€โ”€ genetic_algorithm_reversed_results.csv
โ”‚   โ”‚   โ”œโ”€โ”€ genetic_algorithm_with_reversals_results.csv
โ”‚   โ”‚   โ”œโ”€โ”€ hill_climb_results.csv
โ”‚   โ”‚   โ”œโ”€โ”€ random_search_results.csv
โ”‚   โ”‚   โ””โ”€โ”€ simulated_annealing_results.csv
โ”‚   โ”œโ”€โ”€ booth/...
|   |
|   |
โ”‚   โ””โ”€โ”€ zakharov
โ”‚       โ”œโ”€โ”€ genetic_algorithm_results.csv
โ”‚       โ”œโ”€โ”€ genetic_algorithm_reversed_results                  
โ”‚       โ”œโ”€โ”€ genetic_algorithm_with_reversals_results.csv
โ”‚       โ”œโ”€โ”€ random_search_results.csv
โ”‚       โ””โ”€โ”€ simulated_annealing_results.csv
โ”œโ”€โ”€ plots
โ”‚   โ”œโ”€โ”€ ackley_N2
โ”‚   โ”œโ”€โ”€ fitness_function
โ”‚   โ”‚   โ”œโ”€โ”€ hill_climb.png
โ”‚   โ”‚   โ””โ”€โ”€ random_search.png
โ”‚   โ”œโ”€โ”€ flight_scheduling
โ”‚   โ”‚   โ”œโ”€โ”€ simulated_annealing.png
โ”‚   โ”‚   โ”œโ”€โ”€ sol_chaining.png
โ”‚   โ”‚   โ””โ”€โ”€ sol_chaining_a1.png
โ”‚   โ””โ”€โ”€ griewank

References

Read the following for detailed understanding of our project.

[1] Alicea B., Grover A., Lim A. ,Parent J, Unified Theory of Switching. Flash Talk to be presented at: 4th Neuromatch Conference; December 1 - 2, 2021

Contributing Guidelines

Refer Contributing.md and Project Board for mode details. This repository follows conventional commits!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fliscopt-0.3.0.tar.gz (19.2 kB view details)

Uploaded Source

Built Distribution

fliscopt-0.3.0-py3-none-any.whl (24.3 kB view details)

Uploaded Python 3

File details

Details for the file fliscopt-0.3.0.tar.gz.

File metadata

  • Download URL: fliscopt-0.3.0.tar.gz
  • Upload date:
  • Size: 19.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for fliscopt-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9a0ef76b3fd1762c79721fb420c4673ac0b93ded3955255fd78f00d69698595e
MD5 4c9f0c4597a1c14c95abecc53e7b4899
BLAKE2b-256 5d5887006fea43318052b7b96e58117482656315415c2a9ac8ecce64148c3979

See more details on using hashes here.

File details

Details for the file fliscopt-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: fliscopt-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 24.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for fliscopt-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d85b9152ec4bada14b1442a33d2b0bf19431d2da7c4ed15bae9b5d6cf0bfea67
MD5 bf20913e7b7b1f508eea64fa0353e25f
BLAKE2b-256 3b92b12bc09689410495ab57f01404e392b158f4b26124b4aff7ce42c80327fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page