Skip to main content

Measures the parameters, latency, and floating-point operations of PyTorch model.

Project description

Flops Profiler

PyPI Read the Docs Tests Codecov GitHub license

Measures the parameters, latency, and floating-point operations of PyTorch model.

Similar to DeepSpeed Flops Profiler but more verbose, runs on both CPU and GPU, and explicitly shows all intra-module functional information at module level.

Note that the latency measurement on GPU requires torch.cuda.synchronize() and incurs timing overhead: the timings of the funtionals (topper modules' functional information are direct aggregations of the lower module's) are accurate while the module timings (captured with forward hooks) have overhead. Check the code for timing details.

Install

Install the flops profiler by

pip install flops-profiler

Overview

Effective use of hardware resources is critical to good performance, but performance inefficiency in existing implementations for large-scale model training and inference are often hard to spot and attributed to specific module components. The Flops Profiler helps users easily measure both the model training/inference speed (latency, throughput) and efficiency (floating-point operations per second, i.e., FLOPS) of a model and its submodules, with an eye towards eliminating inefficiencies in existing implementations.

Below is an example output for BERT-base on an A6000 GPU with batch size 1 and sequence length 128 (see bert.py):

MLFlow does not exist. Disabling MLFlow logging

-------------------------- Flops Profiler --------------------------
Profile Summary at step 3:
Notations:
data parallel size (dp_size), model parallel size(mp_size),
number of parameters (params), number of multiply-accumulate operations(MACs),
number of floating-point operations (flops), floating-point operations per second (FLOPS),
fwd latency (forward propagation latency), bwd latency (backward propagation latency),
step (weights update latency), iter latency (sum of fwd, bwd and step latency)

params per device:                                            109.48 M
params of model = params per device * mp_size:                109.48 M
fwd MACs per device:                                          11.17 GMACs
fwd flops per device:                                         22.36 G
fwd flops of model = fwd flops per device * mp_size:          22.36 G
fwd latency:                                                  12.22 ms
fwd FLOPS per device = fwd flops per device / fwd latency:    1.83 TFLOPS

----------------------------- Aggregated Profile per Device -----------------------------
Top 10 modules in terms of params, flops, MACs or duration at different model depths:
depth 0:
    params      - {'BertModel': '109.48 M'}
    flops       - {'BertModel': '22.36 G'}
    MACs        - {'BertModel': '11.17 GMACs'}
    fwd latency - {'BertModel': '12.22 ms'}
depth 1:
    params      - {'BertEncoder': '85.05 M', 'BertEmbeddings': '23.84 M', 'BertPooler': '590.59 k'}
    flops       - {'BertEncoder': '22.36 G', 'BertPooler': '1.18 M', 'BertEmbeddings': '491.52 K'}
    MACs        - {'BertEncoder': '11.17 GMACs', 'BertPooler': '589.82 KMACs', 'BertEmbeddings': '0 MACs'}
    fwd latency - {'BertEncoder': '11.93 ms', 'BertEmbeddings': '194.79 us', 'BertPooler': '92.98 us'}
depth 2:
    params      - {'ModuleList': '85.05 M', 'Embedding': '23.84 M', 'Linear': '590.59 k', 'LayerNorm': '1.54 k', 'Dropout': '0', 'Tanh': '0'}
    flops       - {'ModuleList': '22.36 G', 'Linear': '1.18 M', 'LayerNorm': '491.52 K', 'Embedding': '0', 'Dropout': '0', 'Tanh': '0'}
    MACs        - {'ModuleList': '11.17 GMACs', 'Linear': '589.82 KMACs', 'Embedding': '0 MACs', 'LayerNorm': '0 MACs', 'Dropout': '0 MACs', 'Tanh': '0 MACs'}
    fwd latency - {'ModuleList': '11.85 ms', 'Embedding': '86.07 us', 'Linear': '43.87 us', 'LayerNorm': '31.71 us', 'Tanh': '20.74 us', 'Dropout': '11.68 us'}
depth 3:
    params      - {'BertLayer': '85.05 M'}
    flops       - {'BertLayer': '22.36 G'}
    MACs        - {'BertLayer': '11.17 GMACs'}
    fwd latency - {'BertLayer': '11.85 ms'}
depth 4:
    params      - {'BertAttention': '28.37 M', 'BertIntermediate': '28.35 M', 'BertOutput': '28.34 M'}
    flops       - {'BertAttention': '7.86 G', 'BertOutput': '7.25 G', 'BertIntermediate': '7.25 G'}
    MACs        - {'BertAttention': '3.93 GMACs', 'BertIntermediate': '3.62 GMACs', 'BertOutput': '3.62 GMACs'}
    fwd latency - {'BertAttention': '8.59 ms', 'BertOutput': '1.47 ms', 'BertIntermediate': '1.23 ms'}
depth 5:
    params      - {'Linear': '56.67 M', 'BertSelfAttention': '21.26 M', 'BertSelfOutput': '7.11 M', 'LayerNorm': '18.43 k', 'GELUActivation': '0', 'Dropout': '0'}
    flops       - {'Linear': '14.5 G', 'BertSelfAttention': '6.04 G', 'BertSelfOutput': '1.82 G', 'LayerNorm': '5.9 M', 'GELUActivation': '0', 'Dropout': '0'}
    MACs        - {'Linear': '7.25 GMACs', 'BertSelfAttention': '3.02 GMACs', 'BertSelfOutput': '905.97 MMACs', 'GELUActivation': '0 MACs', 'LayerNorm': '0 MACs', 'Dropout': '0 MACs'}
    fwd latency - {'BertSelfAttention': '5.6 ms', 'BertSelfOutput': '2.79 ms', 'Linear': '1.25 ms', 'LayerNorm': '404.6 us', 'GELUActivation': '338.32 us', 'Dropout': '123.5 us'}

------------------------------ Detailed Profile per Device ------------------------------
Each module profile is listed after its name in the following order:
params, percentage of total params, MACs, percentage of total MACs, fwd latency, percentage of total fwd latency, fwd FLOPS

Note: 1. A module can have torch.nn.module or torch.nn.functional to compute logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus not to be printed out. However they make up the difference between a parent's MACs (or latency) and the sum of its submodules'.
2. Number of floating-point operations is a theoretical estimation, thus FLOPS computed using that could be larger than the maximum system throughput.
3. The fwd latency listed in the top module's profile is directly captured at the module forward function in PyTorch.

BertModel(
  module = {'param': '109.48 M', 'flops': '22.36 G', 'macs': '11.17 GMACs', 'duration': '12.22 ms', 'FLOPS': '1.83 TFLOPS', 'params%': '100.00%', 'flops%': '100.00%', 'macs%': '100.00%', 'duration%': '100.00%'}, functionals = {'embedding': {'flops': '0', 'macs': '0 MACs', 'duration': '45.3 us', 'FLOPS': '0.0 FLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.71%', 'duration%/e2e': '0.37%'}, 'layer_norm': {'flops': '12.29 M', 'macs': '0 MACs', 'duration': '502.11 us', 'FLOPS': '24.47 GFLOPS', 'flops%': '0.05%', 'macs%': '0.00%', 'duration%/allfuncs': '7.86%', 'duration%/e2e': '4.11%'}, 'matmul': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '759.84 us', 'FLOPS': '794.88 GFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '11.89%', 'duration%/e2e': '6.22%'}, 'softmax': {'flops': '2.36 M', 'macs': '0 MACs', 'duration': '129.94 us', 'FLOPS': '18.16 GFLOPS', 'flops%': '0.01%', 'macs%': '0.00%', 'duration%/allfuncs': '2.03%', 'duration%/e2e': '1.06%'}, 'linear': {'flops': '21.74 G', 'macs': '10.87 GMACs', 'duration': '4.95 ms', 'FLOPS': '4.39 TFLOPS', 'flops%': '97.23%', 'macs%': '97.30%', 'duration%/allfuncs': '77.51%', 'duration%/e2e': '40.53%'}}, functionals_duration = 6.39 ms,
  (embeddings): BertEmbeddings(
    module = {'param': '23.84 M', 'flops': '491.52 K', 'macs': '0 MACs', 'duration': '194.79 us', 'FLOPS': '2.52 GFLOPS', 'params%': '21.77%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '1.59%'}, functionals = {'embedding': {'flops': '0', 'macs': '0 MACs', 'duration': '45.3 us', 'FLOPS': '0.0 FLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.71%', 'duration%/e2e': '0.37%'}, 'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '18.36 us', 'FLOPS': '26.77 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.29%', 'duration%/e2e': '0.15%'}}, functionals_duration = 63.66 us,
    (word_embeddings): Embedding(module = {'param': '23.44 M', 'flops': '0', 'macs': '0 MACs', 'duration': '37.91 us', 'FLOPS': '0.0 FLOPS', 'params%': '21.41%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.31%'}, functionals = {'embedding': {'flops': '0', 'macs': '0 MACs', 'duration': '19.55 us', 'FLOPS': '0.0 FLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.31%', 'duration%/e2e': '0.16%'}}, functionals_duration = 19.55 us, 30522, 768, padding_idx=0)
    (position_embeddings): Embedding(module = {'param': '393.22 k', 'flops': '0', 'macs': '0 MACs', 'duration': '24.08 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.36%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.20%'}, functionals = {'embedding': {'flops': '0', 'macs': '0 MACs', 'duration': '13.11 us', 'FLOPS': '0.0 FLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.21%', 'duration%/e2e': '0.11%'}}, functionals_duration = 13.11 us, 512, 768)
    (token_type_embeddings): Embedding(module = {'param': '1.54 k', 'flops': '0', 'macs': '0 MACs', 'duration': '24.08 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.20%'}, functionals = {'embedding': {'flops': '0', 'macs': '0 MACs', 'duration': '12.64 us', 'FLOPS': '0.0 FLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.20%', 'duration%/e2e': '0.10%'}}, functionals_duration = 12.64 us, 2, 768)
    (LayerNorm): LayerNorm(module = {'param': '1.54 k', 'flops': '491.52 K', 'macs': '0 MACs', 'duration': '31.71 us', 'FLOPS': '15.5 GFLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.26%'}, functionals = {'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '18.36 us', 'FLOPS': '26.77 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.29%', 'duration%/e2e': '0.15%'}}, functionals_duration = 18.36 us, (768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '11.68 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.10%'}, functionals = {}, functionals_duration = 0.0, p=0.1, inplace=False)
  )
  (encoder): BertEncoder(
    module = {'param': '85.05 M', 'flops': '22.36 G', 'macs': '11.17 GMACs', 'duration': '11.93 ms', 'FLOPS': '1.87 TFLOPS', 'params%': '77.69%', 'flops%': '99.99%', 'macs%': '99.99%', 'duration%': '97.64%'}, functionals = {'matmul': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '759.84 us', 'FLOPS': '794.88 GFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '11.89%', 'duration%/e2e': '6.22%'}, 'softmax': {'flops': '2.36 M', 'macs': '0 MACs', 'duration': '129.94 us', 'FLOPS': '18.16 GFLOPS', 'flops%': '0.01%', 'macs%': '0.00%', 'duration%/allfuncs': '2.03%', 'duration%/e2e': '1.06%'}, 'linear': {'flops': '21.74 G', 'macs': '10.87 GMACs', 'duration': '4.92 ms', 'FLOPS': '4.42 TFLOPS', 'flops%': '97.23%', 'macs%': '97.29%', 'duration%/allfuncs': '77.05%', 'duration%/e2e': '40.29%'}, 'layer_norm': {'flops': '11.8 M', 'macs': '0 MACs', 'duration': '483.75 us', 'FLOPS': '24.39 GFLOPS', 'flops%': '0.05%', 'macs%': '0.00%', 'duration%/allfuncs': '7.57%', 'duration%/e2e': '3.96%'}}, functionals_duration = 6.3 ms,
    (layer): ModuleList(
      module = {'param': '85.05 M', 'flops': '22.36 G', 'macs': '11.17 GMACs', 'duration': '11.85 ms', 'FLOPS': '1.89 TFLOPS', 'params%': '77.69%', 'flops%': '99.99%', 'macs%': '99.99%', 'duration%': '97.00%'}, functionals = {'matmul': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '759.84 us', 'FLOPS': '794.88 GFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '11.89%', 'duration%/e2e': '6.22%'}, 'softmax': {'flops': '2.36 M', 'macs': '0 MACs', 'duration': '129.94 us', 'FLOPS': '18.16 GFLOPS', 'flops%': '0.01%', 'macs%': '0.00%', 'duration%/allfuncs': '2.03%', 'duration%/e2e': '1.06%'}, 'linear': {'flops': '21.74 G', 'macs': '10.87 GMACs', 'duration': '4.92 ms', 'FLOPS': '4.42 TFLOPS', 'flops%': '97.23%', 'macs%': '97.29%', 'duration%/allfuncs': '77.05%', 'duration%/e2e': '40.29%'}, 'layer_norm': {'flops': '11.8 M', 'macs': '0 MACs', 'duration': '483.75 us', 'FLOPS': '24.39 GFLOPS', 'flops%': '0.05%', 'macs%': '0.00%', 'duration%/allfuncs': '7.57%', 'duration%/e2e': '3.96%'}}, functionals_duration = 6.3 ms,
      (0): BertLayer(
        module = {'param': '7.09 M', 'flops': '1.86 G', 'macs': '931.14 MMACs', 'duration': '997.3 us', 'FLOPS': '1.87 TFLOPS', 'params%': '6.47%', 'flops%': '8.33%', 'macs%': '8.33%', 'duration%': '8.16%'}, functionals = {'matmul': {'flops': '50.33 M', 'macs': '25.17 MMACs', 'duration': '63.42 us', 'FLOPS': '793.63 GFLOPS', 'flops%': '0.23%', 'macs%': '0.23%', 'duration%/allfuncs': '0.99%', 'duration%/e2e': '0.52%'}, 'softmax': {'flops': '196.61 K', 'macs': '0 MACs', 'duration': '10.97 us', 'FLOPS': '17.93 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.17%', 'duration%/e2e': '0.09%'}, 'linear': {'flops': '1.81 G', 'macs': '905.97 MMACs', 'duration': '415.8 us', 'FLOPS': '4.36 TFLOPS', 'flops%': '8.10%', 'macs%': '8.11%', 'duration%/allfuncs': '6.51%', 'duration%/e2e': '3.40%'}, 'layer_norm': {'flops': '983.04 K', 'macs': '0 MACs', 'duration': '39.58 us', 'FLOPS': '24.84 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.62%', 'duration%/e2e': '0.32%'}}, functionals_duration = 529.77 us,
        (attention): BertAttention(
          module = {'param': '2.36 M', 'flops': '655.0 M', 'macs': '327.16 MMACs', 'duration': '742.44 us', 'FLOPS': '882.23 GFLOPS', 'params%': '2.16%', 'flops%': '2.93%', 'macs%': '2.93%', 'duration%': '6.08%'}, functionals = {'matmul': {'flops': '50.33 M', 'macs': '25.17 MMACs', 'duration': '63.42 us', 'FLOPS': '793.63 GFLOPS', 'flops%': '0.23%', 'macs%': '0.23%', 'duration%/allfuncs': '0.99%', 'duration%/e2e': '0.52%'}, 'softmax': {'flops': '196.61 K', 'macs': '0 MACs', 'duration': '10.97 us', 'FLOPS': '17.93 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.17%', 'duration%/e2e': '0.09%'}, 'linear': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '348.57 us', 'FLOPS': '1.73 TFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '5.46%', 'duration%/e2e': '2.85%'}, 'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '21.93 us', 'FLOPS': '22.41 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.34%', 'duration%/e2e': '0.18%'}}, functionals_duration = 444.89 us,
          (self): BertSelfAttention(
            module = {'param': '1.77 M', 'flops': '503.51 M', 'macs': '251.66 MMACs', 'duration': '487.09 us', 'FLOPS': '1.03 TFLOPS', 'params%': '1.62%', 'flops%': '2.25%', 'macs%': '2.25%', 'duration%': '3.99%'}, functionals = {'matmul': {'flops': '50.33 M', 'macs': '25.17 MMACs', 'duration': '63.42 us', 'FLOPS': '793.63 GFLOPS', 'flops%': '0.23%', 'macs%': '0.23%', 'duration%/allfuncs': '0.99%', 'duration%/e2e': '0.52%'}, 'softmax': {'flops': '196.61 K', 'macs': '0 MACs', 'duration': '10.97 us', 'FLOPS': '17.93 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.17%', 'duration%/e2e': '0.09%'}, 'linear': {'flops': '452.98 M', 'macs': '226.49 MMACs', 'duration': '209.81 us', 'FLOPS': '2.16 TFLOPS', 'flops%': '2.03%', 'macs%': '2.03%', 'duration%/allfuncs': '3.28%', 'duration%/e2e': '1.72%'}}, functionals_duration = 284.19 us,
            (query): Linear(module = {'param': '590.59 k', 'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '168.32 us', 'FLOPS': '897.05 GFLOPS', 'params%': '0.54%', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%': '1.38%'}, functionals = {'linear': {'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '149.25 us', 'FLOPS': '1.01 TFLOPS', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%/allfuncs': '2.34%', 'duration%/e2e': '1.22%'}}, functionals_duration = 149.25 us, in_features=768, out_features=768, bias=True)
            (key): Linear(module = {'param': '590.59 k', 'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '45.3 us', 'FLOPS': '3.33 TFLOPS', 'params%': '0.54%', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%': '0.37%'}, functionals = {'linear': {'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '31.47 us', 'FLOPS': '4.8 TFLOPS', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%/allfuncs': '0.49%', 'duration%/e2e': '0.26%'}}, functionals_duration = 31.47 us, in_features=768, out_features=768, bias=True)
            (value): Linear(module = {'param': '590.59 k', 'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '41.72 us', 'FLOPS': '3.62 TFLOPS', 'params%': '0.54%', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%': '0.34%'}, functionals = {'linear': {'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '29.09 us', 'FLOPS': '5.19 TFLOPS', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%/allfuncs': '0.46%', 'duration%/e2e': '0.24%'}}, functionals_duration = 29.09 us, in_features=768, out_features=768, bias=True)
            (dropout): Dropout(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '13.11 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.11%'}, functionals = {}, functionals_duration = 0.0, p=0.1, inplace=False)
          )
          (output): BertSelfOutput(
            module = {'param': '592.13 k', 'flops': '151.49 M', 'macs': '75.5 MMACs', 'duration': '237.7 us', 'FLOPS': '637.29 GFLOPS', 'params%': '0.54%', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%': '1.95%'}, functionals = {'linear': {'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '138.76 us', 'FLOPS': '1.09 TFLOPS', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%/allfuncs': '2.17%', 'duration%/e2e': '1.14%'}, 'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '21.93 us', 'FLOPS': '22.41 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.34%', 'duration%/e2e': '0.18%'}}, functionals_duration = 160.69 us,
            (dense): Linear(module = {'param': '590.59 k', 'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '155.45 us', 'FLOPS': '971.35 GFLOPS', 'params%': '0.54%', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%': '1.27%'}, functionals = {'linear': {'flops': '150.99 M', 'macs': '75.5 MMACs', 'duration': '138.76 us', 'FLOPS': '1.09 TFLOPS', 'flops%': '0.68%', 'macs%': '0.68%', 'duration%/allfuncs': '2.17%', 'duration%/e2e': '1.14%'}}, functionals_duration = 138.76 us, in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm(module = {'param': '1.54 k', 'flops': '491.52 K', 'macs': '0 MACs', 'duration': '35.29 us', 'FLOPS': '13.93 GFLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.29%'}, functionals = {'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '21.93 us', 'FLOPS': '22.41 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.34%', 'duration%/e2e': '0.18%'}}, functionals_duration = 21.93 us, (768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '10.73 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.09%'}, functionals = {}, functionals_duration = 0.0, p=0.1, inplace=False)
          )
        )
        (intermediate): BertIntermediate(
          module = {'param': '2.36 M', 'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '85.83 us', 'FLOPS': '7.04 TFLOPS', 'params%': '2.16%', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%': '0.70%'}, functionals = {'linear': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '35.76 us', 'FLOPS': '16.89 TFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '0.56%', 'duration%/e2e': '0.29%'}}, functionals_duration = 35.76 us,
          (dense): Linear(module = {'param': '2.36 M', 'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '50.54 us', 'FLOPS': '11.95 TFLOPS', 'params%': '2.16%', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%': '0.41%'}, functionals = {'linear': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '35.76 us', 'FLOPS': '16.89 TFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '0.56%', 'duration%/e2e': '0.29%'}}, functionals_duration = 35.76 us, in_features=768, out_features=3072, bias=True)
          (intermediate_act_fn): GELUActivation(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '19.55 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.16%'}, functionals = {}, functionals_duration = 0.0, )
        )
        (output): BertOutput(
          module = {'param': '2.36 M', 'flops': '604.47 M', 'macs': '301.99 MMACs', 'duration': '118.73 us', 'FLOPS': '5.09 TFLOPS', 'params%': '2.16%', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%': '0.97%'}, functionals = {'linear': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '31.47 us', 'FLOPS': '19.19 TFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '0.49%', 'duration%/e2e': '0.26%'}, 'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '17.64 us', 'FLOPS': '27.86 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.28%', 'duration%/e2e': '0.14%'}}, functionals_duration = 49.11 us,
          (dense): Linear(module = {'param': '2.36 M', 'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '44.58 us', 'FLOPS': '13.55 TFLOPS', 'params%': '2.16%', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%': '0.36%'}, functionals = {'linear': {'flops': '603.98 M', 'macs': '301.99 MMACs', 'duration': '31.47 us', 'FLOPS': '19.19 TFLOPS', 'flops%': '2.70%', 'macs%': '2.70%', 'duration%/allfuncs': '0.49%', 'duration%/e2e': '0.26%'}}, functionals_duration = 31.47 us, in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm(module = {'param': '1.54 k', 'flops': '491.52 K', 'macs': '0 MACs', 'duration': '30.04 us', 'FLOPS': '16.36 GFLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.25%'}, functionals = {'layer_norm': {'flops': '491.52 K', 'macs': '0 MACs', 'duration': '17.64 us', 'FLOPS': '27.86 GFLOPS', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%/allfuncs': '0.28%', 'duration%/e2e': '0.14%'}}, functionals_duration = 17.64 us, (768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '10.49 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.09%'}, functionals = {}, functionals_duration = 0.0, p=0.1, inplace=False)
        )
      )
      ...
      (11): BertLayer(...)
    )
  )
  (pooler): BertPooler(
    module = {'param': '590.59 k', 'flops': '1.18 M', 'macs': '589.82 KMACs', 'duration': '92.98 us', 'FLOPS': '12.69 GFLOPS', 'params%': '0.54%', 'flops%': '0.01%', 'macs%': '0.01%', 'duration%': '0.76%'}, functionals = {'linear': {'flops': '1.18 M', 'macs': '589.82 KMACs', 'duration': '29.09 us', 'FLOPS': '40.56 GFLOPS', 'flops%': '0.01%', 'macs%': '0.01%', 'duration%/allfuncs': '0.46%', 'duration%/e2e': '0.24%'}}, functionals_duration = 29.09 us,
    (dense): Linear(module = {'param': '590.59 k', 'flops': '1.18 M', 'macs': '589.82 KMACs', 'duration': '43.87 us', 'FLOPS': '26.89 GFLOPS', 'params%': '0.54%', 'flops%': '0.01%', 'macs%': '0.01%', 'duration%': '0.36%'}, functionals = {'linear': {'flops': '1.18 M', 'macs': '589.82 KMACs', 'duration': '29.09 us', 'FLOPS': '40.56 GFLOPS', 'flops%': '0.01%', 'macs%': '0.01%', 'duration%/allfuncs': '0.46%', 'duration%/e2e': '0.24%'}}, functionals_duration = 29.09 us, in_features=768, out_features=768, bias=True)
    (activation): Tanh(module = {'param': '0', 'flops': '0', 'macs': '0 MACs', 'duration': '20.74 us', 'FLOPS': '0.0 FLOPS', 'params%': '0.00%', 'flops%': '0.00%', 'macs%': '0.00%', 'duration%': '0.17%'}, functionals = {}, functionals_duration = 0.0, )
  )
)
------------------------------------------------------------------------------
Number of flops:                22.36 G
Number of MACs:                 11.17 GMACs
Number of parameters:           109.48 M

In the summary profile, the Flops Profiler outputs the number of parameters, floating-point operations (flops), FLOPS, latency, and throughput in samples/second of the model. This profile shows how much performance gap (compared to the peak hardware performance) the current model execution has and helps users tune the training or inference setup (e.g., hyperparameters, data parallelism, model parallelism, system configurations, etc.) for better performance.

The Flops Profiler also measures significant modules at different model depths (aggregated profile) and module-specific profile in the model architecture (detailed profile). With these profiles users one can understand how each layer or submodule contributes to the overall model complexity/performance. Then users can adjust or refactor the model design to achieve better performance.

Examples

Flops Measurement

Similar to existing flops calculation tools or methods, the Flops Profiler measures the flops of the forward pass of a module and the flops of the backward pass is estimated as 2 times of that of the forward pass. Different from the PyTorch profiler which calculates the flops of PyTorch operators, the Flops Profiler measures the flops within modules in a model and provides more insights to the users about the model execution. The flops estimation is partly inspired by ptflops with the major difference being that the Flops Profiler not only supports flops computation directly at module level, but can also capture torch.nn.functional invoked in a module to estimate the flops. Thus the Flops Profiler allows for customized modules in the model, e.g., ParallelTransformerLayerworks, ParallelSelfAttention, RowParallelLinear, etc. in Megatron-LM. This is in contrast to ptflops which requires users to write customized flops calculation functions for each customized module.

Multi-device, Multi-node, Data Parallelism, and Model Parallelism

The Flops Profiler outputs the PER DEVICE profile. When initialized with a distributed runtime where world size(world_size), data parallel size(dp_world_size), and model parallel size(mp_world_size) are defined, the profiler uses this information; otherwise they are default to 1 in flops calcuation. See ds_engine in source code as a reference. 1 Note that for models running on multi-device or multi-node, only change of the model parallelism (e.g. --model-parallel-size in Megatron-LM) affects the number of flops and parameters profiled, i.e., model_parallel_size * flops = total_flops and model_parallel_size * parameters = total_parameters. The data parallel size or world size (related to the number of GPUs or nodes) does not affect the per device profile.

Usage

In Model Inference

To profile a trained model in inference, we use the get_model_profile function. If the inference is involed in more than just a forward function of the model, for example, model.generate(), we can use the start_profile, stop_profile, and end_profile to capture the higher-level function (similar to the training use case); Or pass in mode='generate' when calling get_model_profile.

Examples are given below.

Example: AlexNet

The following example shows how to profile AlexNet using the Flops Profiler.

import torchvision.models as models
import torch
from flops_profiler import get_model_profile

with torch.cuda.device(0):
    model = models.alexnet()
    batch_size = 256
    flops, macs, params = get_model_profile(model=model, # model
                                    input_shape=(batch_size, 3, 224, 224), # input shape to the model. If specified, the model takes a tensor with this shape as the only positional argument.
                                    args=None, # list of positional arguments to the model.
                                    kwargs=None, # dictionary of keyword arguments to the model.
                                    print_profile=True, # prints the model graph with the measured profile attached to each module
                                    detailed=True, # print the detailed profile
                                    module_depth=-1, # depth into the nested modules, with -1 being the inner most modules
                                    top_modules=1, # the number of top modules to print aggregated profile
                                    warm_up=10, # the number of warm-ups before measuring the time of each module
                                    as_string=True, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k)
                                    output_file=None, # path to the output file. If None, the profiler prints to stdout.
                                    ignore_modules=None, # the list of modules to ignore in the profiling
                                    func_name='forward') # the function name to profile, "forward" by default, for huggingface generative models, `generate` is used

In Model Training Workflow

To profile model forward in a training workflow, use the FlopsProfilerclass. The FlopsProfilerclass provides the following methods:

  • start_profile() - starts profiling
  • get_total_flops(as_string=False) - returns the total number of floating-point operations in the model
  • get_total_macs(as_string=False) - returns the total number of MACs in the model
  • get_total_params(as_string=False) - returns the total number of parameters in the model
  • print_model_profile(profile_step=1, module_depth=-1, top_modules=1, detailed=True, output_file=None) - prints the model profile
  • stop_profile() - stops profiling. This stops the flops counting in the model.
  • end_profile() - cleans up. This cleans up the profile attributes added to the model during the profiling. This should be invoked at the end of the profiling and AFTER get_total_flops, get_total_macs, get_total_params or print_model_profile.

Example Training Workflow

Below is an example of this usage in a typical training workflow.

from flops_profiler import FlopsProfiler

model = Model()
prof = FlopsProfiler(model, ds_engine if ds_engine else None)

profile_step = 5
print_profile= True

for step, batch in enumerate(data_loader):
  # start profiling at training step "profile_step"
  if step == profile_step:
    prof.start_profile()

  # forward() method
  loss = model(batch)

  # end profiling and print output
  if step == profile_step: # if using multi nodes, check global_rank == 0 as well
    prof.stop_profile()
    flops = prof.get_total_flops()
    macs = prof.get_total_macs()
    params = prof.get_total_params()
    if print_profile:
        prof.print_model_profile(profile_step=profile_step)
    prof.end_profile()

  # runs backpropagation
  loss.backward()

  # weight update
  optimizer.step()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flops_profiler-0.1.2.tar.gz (25.9 kB view details)

Uploaded Source

Built Distribution

flops_profiler-0.1.2-py3-none-any.whl (20.5 kB view details)

Uploaded Python 3

File details

Details for the file flops_profiler-0.1.2.tar.gz.

File metadata

  • Download URL: flops_profiler-0.1.2.tar.gz
  • Upload date:
  • Size: 25.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.0 CPython/3.8.16 Linux/5.15.0-1034-azure

File hashes

Hashes for flops_profiler-0.1.2.tar.gz
Algorithm Hash digest
SHA256 59c97cc4393e207d6019d4bd16d3e468572f3174ee7880c1cb18d5ed9d1018d9
MD5 5d9316daaa5b74770d1d5a40be9e46dd
BLAKE2b-256 66d3f2c5de591f48138faeee631ca16b66c1bb1b476c5fd3a692eedcc0cf1145

See more details on using hashes here.

File details

Details for the file flops_profiler-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: flops_profiler-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 20.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.0 CPython/3.8.16 Linux/5.15.0-1034-azure

File hashes

Hashes for flops_profiler-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 085641ca89b5d6e6bf58ad6cf9d84bd08825742a6ed78752eeb0ccfc7ce65038
MD5 32ab904ef6b5376e39dc26876d42d948
BLAKE2b-256 43265732be586af7ab6cf8a518c91e7a5a44a839aa00d014173eee0398d357c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page