A program to calculate FLOPs and Parameters of Pytorch models
Project description
______ __ __ / __/ /___ ____ / /_/ /_ / /_/ / __ \/ __ \/ __/ __ \ / __/ / /_/ / /_/ / /_/ / / / /_/ /_/\____/ .___/\__/_/ /_/ /_/
flopth
A simple program to calculate and visualize the FLOPs and Parameters of Pytorch models, with cli tool and Python API.
Features
- Handy cli command to show flops and params quickly
- Visualization percent of flops and params in each layer
- Support multiple inputs in model's
forward
function - Support Both CPU and GPU mode
- Support Torchscript Model (Only Parameters are shown)
- Support Python3.5 and above
Installation
Install stable version of flopth via pypi:
pip install flopth
or install latest version via github:
pip install -U git+https://github.com/vra/flopth.git
Usage examples
cli command
flopth provide cli command flopth
after installation. You can use it to get information of pytorch models quickly
Running on models in torchvision.models
with flopth -m <model_name>
, flopth gives you all information about the <model_name>
, input shape, output shape, parameter and flops of each layer, and total flops and params.
Here is an example running on alexnet (default input size in (3, 224, 224)):
$ flopth -m alexnet
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0 | Conv2d | (3,224,224) | (64,55,55) | 23.296K | 0.0381271% | | 70.4704M | 9.84839% | #### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1 | ReLU | (64,55,55) | (64,55,55) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2 | MaxPool2d | (64,55,55) | (64,27,27) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3 | Conv2d | (64,27,27) | (192,27,27) | 307.392K | 0.50309% | | 224.089M | 31.3169% | ############### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4 | ReLU | (192,27,27) | (192,27,27) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5 | MaxPool2d | (192,27,27) | (192,13,13) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6 | Conv2d | (192,13,13) | (384,13,13) | 663.936K | 1.08662% | | 112.205M | 15.6809% | ####### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7 | ReLU | (384,13,13) | (384,13,13) | 0.0 | 0.0% | | 64.896K | 0.00906935% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8 | Conv2d | (384,13,13) | (256,13,13) | 884.992K | 1.44841% | | 149.564M | 20.9018% | ########## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10 | Conv2d | (256,13,13) | (256,13,13) | 590.08K | 0.965748% | | 99.7235M | 13.9366% | ###### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12 | MaxPool2d | (256,13,13) | (256,6,6) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool | AdaptiveAvgPool2d | (256,6,6) | (256,6,6) | 0.0 | 0.0% | | 9.216K | 0.00128796% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0 | Dropout | (9216) | (9216) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1 | Linear | (9216) | (4096) | 37.7528M | 61.7877% | ############################## | 37.7487M | 5.27547% | ## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3 | Dropout | (4096) | (4096) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4 | Linear | (4096) | (4096) | 16.7813M | 27.4649% | ############# | 16.7772M | 2.34465% | # |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6 | Linear | (4096) | (1000) | 4.097M | 6.70531% | ### | 4.096M | 0.572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
FLOPs: 715.553M
Params: 61.1008M
Running on custom models
Also, given model name and the file path where the model defined, flopth will output model information:
For the dummpy network MyModel
defined in /tmp/my_model.py
,
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
def forward(self, x1):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x1 = self.conv4(x1)
return x1
You can use flopth -m MyModel -p /tmp/my_model -i 3 224 224
to print model information:
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
FLOPs: 16.8591M
Params: 336.0
Multiple inputs
If your model has more than one input in forward
, you can add multiple -i
parameters to flopth:
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)
You can use flopth -m MyModel -p /tmp/my_model -i 3 224 224 -i 3 128 128
to print model information:
flopth -m MyModel -p /tmp/my_model.py -i 3 224 224 -i 3 128 128
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
FLOPs: 11.1821M
Params: 336.0
Extra arguments in model's initialization
flopth with options like -x param1=int:3 param2=float:5.2
to process the extra parameters in model's initialization:
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn
class MyModel(nn.Module):
# Please Notice the parameters ks1 and ks2 here!
def __init__(self, ks1, ks2):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=ks1, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=ks1, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=ks2, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=ks2, padding=1)
def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)
In order to pass value to the arguments of ks1
and ks2
, we can run flopth like this:
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224 -i 3 128 128 -x ks1=int:3 ks2=int:1
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+=======================+==========+=================+=========================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 43.75% | ##################### | 4.21478M | 47.6707% | ####################### |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 43.75% | ##################### | 4.21478M | 47.6707% | ####################### |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv3 | Conv2d | (3,128,128) | (3,130,130) | 12 | 6.25% | ### | 202.8K | 2.29374% | # |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv4 | Conv2d | (3,130,130) | (3,132,132) | 12 | 6.25% | ### | 209.088K | 2.36486% | # |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
FLOPs: 8.84146M
Params: 192.0
Line number mode
One of the fancy features of flopth is that given the line number where the model object is definited, flopth can print model information:
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)
if __name__ == '__main__':
my_model = MyModel()
Since the model object my_model
in defined in line 23, we can run flopth like this:
$ flopth -n 23 -p /tmp/my_model.py -i 3 224 224 -i 3 128 128
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
FLOPs: 11.1821M
Params: 336.0
Notice: Although line number mode of flopth is quite handy, it may fail when the model definition is too complex, e.g., using outer config file to initialize a model. In this case, I recommend you to use flopth's Python API detailed below.
Python API
The Python API of flopth is quite simple:
import torch
import torch.nn as nn
# import flopth
from flopth import flopth
# define Model
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
def forward(self, x1):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x1 = self.conv4(x1)
return x1
# declare Model object
my_model = MyModel()
# Use input size
flops, params = flopth(my_model, in_size=((3, 224, 224),))
print(flops, params)
# Or use input tensors
dummy_inputs = torch.rand(1, 3, 224, 224)
flops, params = flopth(my_model, inputs=(dummy_inputs,))
print(flops, params)
The output is like this:
16.8591M 336.0
To show detail information of each layer, add show_detail=True
in flopth function call:
flops, params = flopth(my_model, in_size=((3, 224, 224),), show_detail=True)
The outputs:
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
16.8591M 336.0
To show only the value of flops and params (no unit conversion), add bare_number=True
to flopth function call:
flops, params = flopth(my_model, in_size=((3, 224, 224),), bare_number=True)
The outputs:
16859136 336
Known issues
- When use a module more than one time during
forward
, the FLOPs calculation is not correct, For example:
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(10, 10)
def forward(self, x, y):
x = self.l1(x)
x = self.l1(x)
x = self.l1(x)
return x
Will give wrong FLOPs value, because we use register_buffer , which is bind to a nn.Module
(in this example, l1
).
TODOs
- Support multiple inputs
- Add parameter size
- Add file line mode
- Add line number mode
- Support more modules
Contribution and issue
Any discussion and contribution are very welcomed. Please open an issue to reach me.
Acknowledge
This program is mostly inspired by torchstat, great thanks to the creators of it.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file flopth-0.1.5.tar.gz
.
File metadata
- Download URL: flopth-0.1.5.tar.gz
- Upload date:
- Size: 16.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2217783391f0cae610d3296caec53331b48f6ffc15817cf9e2af7ca23457e91 |
|
MD5 | 695ade4b9ec3e791800675a187f9bb87 |
|
BLAKE2b-256 | 1e826c12b64589cba332f7c3c51c1d7e0f7f7865de98ab4e8031470eb67b1a81 |
File details
Details for the file flopth-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: flopth-0.1.5-py3-none-any.whl
- Upload date:
- Size: 12.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b04163b2ee69623918f28c5e1b482ace753677bbbf789c56591fc7f16b0deaf7 |
|
MD5 | 6386eaf92b1d4b95ec0f948067180a1c |
|
BLAKE2b-256 | 657c128921a95cfd3cf4a307f8076f430cdc591c3d4988f4a5b114755516f3db |