Skip to main content

Python interface based on FloPy to configure input files for MODPATH-RW

Project description

flopyrw

An extension of FloPy to write input simulation files for MODPATH-RW with Python.

Overview

Provides classes extended from the modpath module in flopy adapted to specific structures required by MODPATH-RW. Also introduces new package writers required by the program, consistent with the Documentation of Input-Output.

Quickstart

Install

To install the package from source, clone the repository:

git clone https://github.com/upc-ghs/flopyrw

and install

pip install -e /the/path/to/flopyrw/

You can also install the current release from PyPI:

pip install flopyrw

Use it

Classes follow the same logic than flopy, configuring packages on top of a MODFLOW flow-model object. For example, the flopy quickstart case:

import os
import flopy
from flopyrw import modpathrw

ws   = './mymodel'
name = 'mymodel'
sim  = flopy.mf6.MFSimulation(sim_name=name, sim_ws=ws, exe_name='mf6')
tdis = flopy.mf6.ModflowTdis(sim)
ims  = flopy.mf6.ModflowIms(sim)
gwf  = flopy.mf6.ModflowGwf(sim, modelname=name, save_flows=True)
dis  = flopy.mf6.ModflowGwfdis(gwf, nrow=10, ncol=10)
ic   = flopy.mf6.ModflowGwfic(gwf)
npf  = flopy.mf6.ModflowGwfnpf(gwf, save_specific_discharge=True)
# Same than in flopy quickstart,
# but with an aux var for concentration.
chd  = flopy.mf6.ModflowGwfchd(
        gwf,
        auxiliary=['CONCENTRATION'],
        stress_period_data=[
            [(0, 0, 0), 1.,1.],
            [(0, 9, 9), 0.,0.]
        ]
    )
budget_file = name + '.bud'
head_file   = name + '.hds'
oc = flopy.mf6.ModflowGwfoc(gwf,
        budget_filerecord=budget_file,
        head_filerecord=head_file,
        saverecord=[('HEAD', 'ALL'), ('BUDGET', 'ALL')]
    )
sim.write_simulation()
sim.run_simulation()

# Create a modpathrw model
# By default executable is 'mpathrw'
mprw = modpathrw.ModpathRW(flowmodel=gwf)

# Random walk options
modpathrw.ModpathRWOpts(
        mprw,
        timestep = 'min',
        ctdisp   = 0.1,
        courant  = 0.1,
        dimensionsmask=[1,1,0], # Random walk in x,y and not in z
    )

# Dispersion parameters 
modpathrw.ModpathRWDsp( mprw, alphal=0.1, alphat=0.01,  dmeff=0.0 )

# Basic package
modpathrw.ModpathRWBas( mprw, porosity=0.3 )

# Define the solute source
# In forward tracking, only cells with injecting flow-rate release particles
modpathrw.ModpathRWSrc(
        mprw,
        sources=(
            'CHD', # package name
            [            
                [
                    'CONCENTRATION', # aux variable
                    0.001,           # particlesmass
                    (4,4,1)          # template
                ], 
            ],
        ),
    )

# Configure the simulation 
simconfig = {
    'simulationtype'    : 'rwendpoint', 
    'trackingdirection' : 'forward',
    'weaksinkoption'    : 'stop_at',
    'weaksourceoption'  : 'pass_through',
    'stoptimeoption'    : 'specified',
    'stoptime'          : 20.0,
}
mprwsim = modpathrw.ModpathRWSim( mprw,  **simconfig )

# Write the input files
mprw.write_input()

# And run 
mprw.run_model()

# Get output and plot
head   = gwf.output.head().get_data()
bud    = gwf.output.budget()
epoint = flopy.utils.EndpointFile( os.path.join( ws, mprwsim.endpointfilename ) ) 
spdis  = bud.get_data(text='DATA-SPDIS')[0]
qx, qy, qz = flopy.utils.postprocessing.get_specific_discharge(spdis, gwf)
pmv = flopy.plot.PlotMapView(gwf)
pmv.plot_array(head)
pmv.plot_grid(colors='white')
pmv.contour_array(head, levels=[.2, .4, .6, .8], linewidths=3.)
pmv.plot_vector(qx, qy, normalize=True, color="white")
pmv.plot_endpoint( epoint.get_alldata(), zorder=10, s=4, linewidth=0.5, edgecolor='k' )
plot

Note: In order to run a model via the interface a MODPATH-RW executable is required.

Testing

A suite of automated tests is available verifying different aspects of the interface and the program. In order to run these tests, some additional dependencies are required, which can be installed with:

pip install ".[test]"

You can follow the FloPy test guidelines for running and debugging tests.

Run the complete test suite from the folder autotest with the command:

pytest -s -v 

Resources

MIT License

Copyright (c) 2023 Hydrogeology Group - Universitat Politècnica de Catalunya

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flopyrw-1.0.0.tar.gz (4.4 kB view hashes)

Uploaded Source

Built Distribution

flopyrw-1.0.0-py3-none-any.whl (5.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page