Skip to main content

SDK for Hubble API at Jina AI.

Project description

floralatin-hubble-sdk5

PyPI

Install

pip install floralatin-hubble-sdk5

Core functionality

  • Python API and CLI.
  • Authentication and token management.
  • Artifact management.

Python API

Detecting logging status

import hubble
if hubble.is_logged_in():
    print('yeah')
else:
    print('no')

Get a token

Notice that the token you got from this function is always valid. If the token is invalid or expired, the result is None.

import hubble
hubble.get_token()

If you are using inside an interactive environment, i.e. user can input via stdin:

import hubble
hubble.get_token(interactive=True)

Mark a function as login required,

import hubble

@hubble.login_required
def foo():
    pass

Login to Hubble

import hubble

# Open browser automatically and login via 3rd party.
# Token will be saved locally.
hubble.login()

Login to Hubble from notebook environments (like Google Colab).

import hubble

# Use Personal Access Token or browser to login.
# Token will be saved locally.
hubble.notebook_login()

Logout

import hubble

# If there is a valid token locally, 
# this will disable that token and remove it from local config.
hubble.logout()

Authentication and Token Management

After calling hubble.login(), you can use the client with:

import hubble

client = hubble.Client(
    max_retries=None,
    jsonify=True
)
# Get current user information.
response = client.get_user_info()
# Create a new personally access token for longer expiration period.
response = client.create_personal_access_token(
    name='my-pat',
    expiration_days=30
)
# Query all personal access tokens.
response = client.list_personal_access_tokens()

Artifact Management

import hubble
import io

client = hubble.Client(
    max_retries=None,
    jsonify=True
)

# Upload artifact to Hubble Artifact Storage by providing path.
response = client.upload_artifact(
    f='~/Documents/my-model.onnx',
    is_public=False
)

# Upload artifact to Hubble Artifact Storage by providing `io.BytesIO`
response = client.upload_artifact(
    f=io.BytesIO(b"some initial binary data: \x00\x01"),
    is_public=False
)

# Get current artifact information.
response = client.get_artifact_info(id='my-artifact-id')

# Download artifact to local directory.
response = client.download_artifact(
    id='my-artifact-id',
    f='my-local-filepath'
)
# Download artifact as an io.BytesIO object
response = client.download_artifact(
    id='my-artifact-id',
    f=io.BytesIO()
)

# Get list of artifacts.
response = client.list_artifacts(filter={'metaData.foo': 'bar'}, sort={'type': -1})

# Delete the artifact.
response = client.delete_artifact(id='my-artifact-id')

Error Handling

import hubble

client = hubble.Client()

try:
    client.get_user_info()
except hubble.excepts.AuthenticationRequiredError:
    print('Please login first.')
except Exception:
    print('Unknown error')

CLI

Login to Jina Cloud

Open browser automatically and login via 3rd party. Token will be saved locally.

jina auth login

Logout

If there is a valid token locally, this will disable that token and remove it from local config.

jina auth logout

Personal access token (PAT) management

Create a new PAT

jina auth token create <name of PAT> -e <expiration days>

List PATs

jina auth token list

Delete PAT

jina auth token delete <name of PAT>

Development

Local test

  • Make a new virtual env. make env
  • Install dependencies. make init
  • The test should be run in a logged in environment. So need to login to Jina. jina auth login
  • Test locally. make test

Release cycle

  • Each time new commits come into main branch, CD workflow will generate a new release both on GitHub and Pypi.
  • Each time new commits come into alpha branch, CD workflow will generate a new pre-release both on GitHub and Pypi.

FAQ (Frequently Asked Questions)

Run into RuntimeError: asyncio.run() cannot be called from a running event loop in Google Colab?

You could run into a problem when you trying to run this code in Google Colab.

import hubble

hubble.login()

The way to bypass this problem is using hubble.notebook_login(), specially designed for logging into Jina from notebook environments.

import hubble

hubble.notebook_login()

Support

Join Us

Hubble Python SDK is backed by Jina AI and licensed under Apache-2.0. We are actively hiring AI engineers, solution engineers to build the next neural search ecosystem in opensource.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

floralatin-hubble-sdk5-1.0.0.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

floralatin_hubble_sdk5-1.0.0-py3-none-any.whl (58.7 kB view details)

Uploaded Python 3

File details

Details for the file floralatin-hubble-sdk5-1.0.0.tar.gz.

File metadata

File hashes

Hashes for floralatin-hubble-sdk5-1.0.0.tar.gz
Algorithm Hash digest
SHA256 9d1cc882a1901ff1c98ea4438425ff27a99fc48ad33d943f4b9cf533de45295c
MD5 ea27b730e197e5e6dcaa25fa9b92ffca
BLAKE2b-256 40c0530507a757503c8e4a942efb54b4b1bf637d0fd72c372c92da1f8af0fa05

See more details on using hashes here.

File details

Details for the file floralatin_hubble_sdk5-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for floralatin_hubble_sdk5-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1633b5990d4061185de518058b987f98e1594a1e98c8adb2475ec10f8f2a426d
MD5 d3f3b7019c033702098d56e54d969d29
BLAKE2b-256 81f18bb1dacce96c1c3d872196c25ce08e8836453e2514812f664637b644c1fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page