Skip to main content

SDK for Hubble API at Jina AI.

Project description

floralatin-hubble-sdk7

PyPI

Install

pip install floralatin-hubble-sdk7

Core functionality

  • Python API and CLI.
  • Authentication and token management.
  • Artifact management.

Python API

Detecting logging status

import hubble
if hubble.is_logged_in():
    print('yeah')
else:
    print('no')

Get a token

Notice that the token you got from this function is always valid. If the token is invalid or expired, the result is None.

import hubble
hubble.get_token()

If you are using inside an interactive environment, i.e. user can input via stdin:

import hubble
hubble.get_token(interactive=True)

Mark a function as login required,

import hubble

@hubble.login_required
def foo():
    pass

Login to Hubble

import hubble

# Open browser automatically and login via 3rd party.
# Token will be saved locally.
hubble.login()

Login to Hubble from notebook environments (like Google Colab).

import hubble

# Use Personal Access Token or browser to login.
# Token will be saved locally.
hubble.notebook_login()

Logout

import hubble

# If there is a valid token locally, 
# this will disable that token and remove it from local config.
hubble.logout()

Authentication and Token Management

After calling hubble.login(), you can use the client with:

import hubble

client = hubble.Client(
    max_retries=None,
    jsonify=True
)
# Get current user information.
response = client.get_user_info()
# Create a new personally access token for longer expiration period.
response = client.create_personal_access_token(
    name='my-pat',
    expiration_days=30
)
# Query all personal access tokens.
response = client.list_personal_access_tokens()

Artifact Management

import hubble
import io

client = hubble.Client(
    max_retries=None,
    jsonify=True
)

# Upload artifact to Hubble Artifact Storage by providing path.
response = client.upload_artifact(
    f='~/Documents/my-model.onnx',
    is_public=False
)

# Upload artifact to Hubble Artifact Storage by providing `io.BytesIO`
response = client.upload_artifact(
    f=io.BytesIO(b"some initial binary data: \x00\x01"),
    is_public=False
)

# Get current artifact information.
response = client.get_artifact_info(id='my-artifact-id')

# Download artifact to local directory.
response = client.download_artifact(
    id='my-artifact-id',
    f='my-local-filepath'
)
# Download artifact as an io.BytesIO object
response = client.download_artifact(
    id='my-artifact-id',
    f=io.BytesIO()
)

# Get list of artifacts.
response = client.list_artifacts(filter={'metaData.foo': 'bar'}, sort={'type': -1})

# Delete the artifact.
response = client.delete_artifact(id='my-artifact-id')

Error Handling

import hubble

client = hubble.Client()

try:
    client.get_user_info()
except hubble.excepts.AuthenticationRequiredError:
    print('Please login first.')
except Exception:
    print('Unknown error')

CLI

Login to Jina Cloud

Open browser automatically and login via 3rd party. Token will be saved locally.

jina auth login

Logout

If there is a valid token locally, this will disable that token and remove it from local config.

jina auth logout

Personal access token (PAT) management

Create a new PAT

jina auth token create <name of PAT> -e <expiration days>

List PATs

jina auth token list

Delete PAT

jina auth token delete <name of PAT>

Development

Local test

  • Make a new virtual env. make env
  • Install dependencies. make init
  • The test should be run in a logged in environment. So need to login to Jina. jina auth login
  • Test locally. make test

Release cycle

  • Each time new commits come into main branch, CD workflow will generate a new release both on GitHub and Pypi.
  • Each time new commits come into alpha branch, CD workflow will generate a new pre-release both on GitHub and Pypi.

FAQ (Frequently Asked Questions)

Run into RuntimeError: asyncio.run() cannot be called from a running event loop in Google Colab?

You could run into a problem when you trying to run this code in Google Colab.

import hubble

hubble.login()

The way to bypass this problem is using hubble.notebook_login(), specially designed for logging into Jina from notebook environments.

import hubble

hubble.notebook_login()

Support

Join Us

Hubble Python SDK is backed by Jina AI and licensed under Apache-2.0. We are actively hiring AI engineers, solution engineers to build the next neural search ecosystem in opensource.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

floralatin-hubble-sdk7-1.0.0.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

floralatin_hubble_sdk7-1.0.0-py3-none-any.whl (58.7 kB view details)

Uploaded Python 3

File details

Details for the file floralatin-hubble-sdk7-1.0.0.tar.gz.

File metadata

File hashes

Hashes for floralatin-hubble-sdk7-1.0.0.tar.gz
Algorithm Hash digest
SHA256 fa197da21281668fb19241407ea649550d6fb6db3ec141d61d099568d3ad57e2
MD5 b899bc4da7b24590a8ee8b04dd1b6c92
BLAKE2b-256 b086ed8e16b2ec82dba94835569f4e02ff52b416e0a09f8eb33671de4d976765

See more details on using hashes here.

File details

Details for the file floralatin_hubble_sdk7-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for floralatin_hubble_sdk7-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f618dbc77ce3a215fe00a6c84c3c3c9e1c2ac1ecd77d6e5ff68f945b39a17082
MD5 6cc5beee165bae206324e0e73dd59d46
BLAKE2b-256 839f67d673200b56c1910a89bd0f09a0c30c214fe683419a719fd9120077717f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page