Skip to main content

SDK for Hubble API at Jina AI.

Project description

floralatin-hubble-sdk9

PyPI

Install

pip install floralatin-hubble-sdk9

Core functionality

  • Python API and CLI.
  • Authentication and token management.
  • Artifact management.

Python API

Detecting logging status

import hubble
if hubble.is_logged_in():
    print('yeah')
else:
    print('no')

Get a token

Notice that the token you got from this function is always valid. If the token is invalid or expired, the result is None.

import hubble
hubble.get_token()

If you are using inside an interactive environment, i.e. user can input via stdin:

import hubble
hubble.get_token(interactive=True)

Mark a function as login required,

import hubble

@hubble.login_required
def foo():
    pass

Login to Hubble

import hubble

# Open browser automatically and login via 3rd party.
# Token will be saved locally.
hubble.login()

Login to Hubble from notebook environments (like Google Colab).

import hubble

# Use Personal Access Token or browser to login.
# Token will be saved locally.
hubble.notebook_login()

Logout

import hubble

# If there is a valid token locally, 
# this will disable that token and remove it from local config.
hubble.logout()

Authentication and Token Management

After calling hubble.login(), you can use the client with:

import hubble

client = hubble.Client(
    max_retries=None,
    jsonify=True
)
# Get current user information.
response = client.get_user_info()
# Create a new personally access token for longer expiration period.
response = client.create_personal_access_token(
    name='my-pat',
    expiration_days=30
)
# Query all personal access tokens.
response = client.list_personal_access_tokens()

Artifact Management

import hubble
import io

client = hubble.Client(
    max_retries=None,
    jsonify=True
)

# Upload artifact to Hubble Artifact Storage by providing path.
response = client.upload_artifact(
    f='~/Documents/my-model.onnx',
    is_public=False
)

# Upload artifact to Hubble Artifact Storage by providing `io.BytesIO`
response = client.upload_artifact(
    f=io.BytesIO(b"some initial binary data: \x00\x01"),
    is_public=False
)

# Get current artifact information.
response = client.get_artifact_info(id='my-artifact-id')

# Download artifact to local directory.
response = client.download_artifact(
    id='my-artifact-id',
    f='my-local-filepath'
)
# Download artifact as an io.BytesIO object
response = client.download_artifact(
    id='my-artifact-id',
    f=io.BytesIO()
)

# Get list of artifacts.
response = client.list_artifacts(filter={'metaData.foo': 'bar'}, sort={'type': -1})

# Delete the artifact.
response = client.delete_artifact(id='my-artifact-id')

Error Handling

import hubble

client = hubble.Client()

try:
    client.get_user_info()
except hubble.excepts.AuthenticationRequiredError:
    print('Please login first.')
except Exception:
    print('Unknown error')

CLI

Login to Jina Cloud

Open browser automatically and login via 3rd party. Token will be saved locally.

jina auth login

Logout

If there is a valid token locally, this will disable that token and remove it from local config.

jina auth logout

Personal access token (PAT) management

Create a new PAT

jina auth token create <name of PAT> -e <expiration days>

List PATs

jina auth token list

Delete PAT

jina auth token delete <name of PAT>

Development

Local test

  • Make a new virtual env. make env
  • Install dependencies. make init
  • The test should be run in a logged in environment. So need to login to Jina. jina auth login
  • Test locally. make test

Release cycle

  • Each time new commits come into main branch, CD workflow will generate a new release both on GitHub and Pypi.
  • Each time new commits come into alpha branch, CD workflow will generate a new pre-release both on GitHub and Pypi.

FAQ (Frequently Asked Questions)

Run into RuntimeError: asyncio.run() cannot be called from a running event loop in Google Colab?

You could run into a problem when you trying to run this code in Google Colab.

import hubble

hubble.login()

The way to bypass this problem is using hubble.notebook_login(), specially designed for logging into Jina from notebook environments.

import hubble

hubble.notebook_login()

Support

Join Us

Hubble Python SDK is backed by Jina AI and licensed under Apache-2.0. We are actively hiring AI engineers, solution engineers to build the next neural search ecosystem in opensource.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

floralatin-hubble-sdk9-1.0.2.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

floralatin_hubble_sdk9-1.0.2-py3-none-any.whl (58.7 kB view details)

Uploaded Python 3

File details

Details for the file floralatin-hubble-sdk9-1.0.2.tar.gz.

File metadata

File hashes

Hashes for floralatin-hubble-sdk9-1.0.2.tar.gz
Algorithm Hash digest
SHA256 41dcde3a7d8cde5110fc6d29f0fbb126e2d8c8e706be725719ffa9c8c7abdc86
MD5 68048e6fb89421a53b477829aa5271a6
BLAKE2b-256 5159e8d7a695d8b8d88640c958ac5e9a72e14505921ecd4ebf093fadf1340554

See more details on using hashes here.

File details

Details for the file floralatin_hubble_sdk9-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for floralatin_hubble_sdk9-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ec332106d3432a2cda20b58bc7da944e55d968b39f427ace4544b6721aa68861
MD5 d8be904dd2e115a483d2e48ae249c224
BLAKE2b-256 8e03790ee0b83b2e53d6e20565ddd04ae0edfe0f638fc55d5a9c3151460a30d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page