Skip to main content

floret Python bindings

Project description

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret is an extended version of fastText that can produce word representations for any word from a compact vector table. It combines:

  • fastText's subwords to provide embeddings for any word
  • Bloom embeddings ("hashing trick") for a compact vector table

Installation

pip install floret

Usage

Train floret vectors using the options:

  • mode: "floret", storing both words and subwords in the same compact hash table
  • hashCount: store each entry in 1-4 rows in the hash table (recommended: 2)
  • bucket: in combination with hashCount>1, the size of the hash table can be greatly reduced (recommended: 25000--100000, reduced from the fastText default of 2000000)
  • minn: min length of char ngram (default: 3)
  • maxn: max length of char ngram (default: 6)
import floret

# train vectors
model = floret.train_unsupervised(
    "data.txt",
    model="cbow",
    mode="floret",
    hashCount=2,
    bucket=50000,
    minn=3,
    maxn=6,
)

# query vector
model.get_word_vector("broccoli")

# save full model
model.save_model("vectors.bin")

# export standard word-only vector table
model.save_vectors("vectors.vec")

# export floret vector table
model.save_floret_vectors("vectors.floret")

Note: with the default setting mode="fasttext", floret trains original fastText vectors.

Use floret vectors in spaCy

Import floret vectors into spaCy v3.2+:

spacy init vectors LANG vectors.floret spacy_vectors_model --mode floret

Notes

floret contains all features of the original fasttext module. See the fasttext docs for more information.

The fasttext and floret binary formats saved with model.save_model("model.bin") are not compatible.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

floret-0.10.5.tar.gz (70.9 kB view details)

Uploaded Source

Built Distributions

floret-0.10.5-cp312-cp312-win_amd64.whl (243.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

floret-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (321.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (302.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp312-cp312-macosx_11_0_x86_64.whl (373.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

floret-0.10.5-cp312-cp312-macosx_11_0_arm64.whl (351.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

floret-0.10.5-cp311-cp311-win_amd64.whl (242.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

floret-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (321.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (302.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp311-cp311-macosx_11_0_x86_64.whl (370.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

floret-0.10.5-cp311-cp311-macosx_11_0_arm64.whl (351.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

floret-0.10.5-cp310-cp310-win_amd64.whl (242.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

floret-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (320.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (301.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp310-cp310-macosx_11_0_x86_64.whl (368.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

floret-0.10.5-cp310-cp310-macosx_11_0_arm64.whl (350.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

floret-0.10.5-cp39-cp39-win_amd64.whl (236.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

floret-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (320.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (302.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp39-cp39-macosx_11_0_x86_64.whl (369.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

floret-0.10.5-cp39-cp39-macosx_11_0_arm64.whl (350.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

floret-0.10.5-cp38-cp38-win_amd64.whl (242.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

floret-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (320.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (301.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp38-cp38-macosx_11_0_arm64.whl (350.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

floret-0.10.5-cp38-cp38-macosx_10_16_x86_64.whl (368.9 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

floret-0.10.5-cp37-cp37m-win_amd64.whl (241.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

floret-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (324.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp37-cp37m-macosx_10_16_x86_64.whl (364.3 kB view details)

Uploaded CPython 3.7m macOS 10.16+ x86-64

floret-0.10.5-cp36-cp36m-win_amd64.whl (255.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

floret-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (324.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

floret-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (305.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

floret-0.10.5-cp36-cp36m-macosx_10_16_x86_64.whl (364.5 kB view details)

Uploaded CPython 3.6m macOS 10.16+ x86-64

File details

Details for the file floret-0.10.5.tar.gz.

File metadata

  • Download URL: floret-0.10.5.tar.gz
  • Upload date:
  • Size: 70.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5.tar.gz
Algorithm Hash digest
SHA256 8a94654a87b3335499cd4d14532a6f947a8cc14bd3e28044d7ccf06e99084156
MD5 fe78e6319f53ff75333a818870a2d86b
BLAKE2b-256 c4a40286fed39e374a2237180ee1976444908250f54a01fa8ac198764abdfc59

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 243.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e074b9e731504191e366f5f21f2f419a2dc3194d6d17ef26ced7edceefac3f79
MD5 bd59b3e2eea82bc7aaac3f27ffc45238
BLAKE2b-256 e625297f47eab2fb42cb9bea8c1eadeece3bcdd3af185448dd90eed6baa8e106

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfea32120951b8781c318e5ee9847eb9895ff7a18dd49c5d466ad8951589a0f5
MD5 b67b13769a7bcb6e12a7d312c7cc8f0b
BLAKE2b-256 2f68f5c6dc90acf6ddf8203fb79d5ff4e6f2bf93f1ec4987ff1094f22ce6f2c1

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c3d1d189fd12f75bc2f4229a5fd4f6eb333f598063609ff050c6a1296568e98
MD5 370ea6f0021e96906ad3949c2876dd0e
BLAKE2b-256 c699a4b611ac73b1232e5afc7e412ad3e1511ea1971f3608ce359b277a5e9a03

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 96de360cf7f93f21e28641f74c309e3207ceab3856b2cf4867f9135788f02115
MD5 6a198d7df8471b61850ae8a58c1d9af7
BLAKE2b-256 790a3fef8be2c708a15208fe9e95ac5a71cf501eba0e95f675ed27d6229493f5

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87bb2d7a44c6ac2572ca4aeed6a7780f184c2cebe67a6cf3e3b8d3005da360b4
MD5 b42ded6b08a038999f4328e822b28a49
BLAKE2b-256 46d0cb9662031bfaf867ee832d1ec086fa909d79b295f4b06096d93f6fdc13cd

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 242.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 020317dac154caff1e03cdb8dd1e5d013cb0749d5913e264834017386f905655
MD5 bd26012cedc3f36b4140b71d80074481
BLAKE2b-256 f67cda990fa09047a6c3da37d4612f4af822877b4378b0fe579c85d9c8f54e23

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 237e2eeee54147bf893aef8b1297631f53127b888c2978b1957d9a96af9b769c
MD5 1a009442db2dae2f76d8974b1dea91be
BLAKE2b-256 47b4c76e49ad7d0e8ec7dae57a16ac129bcf0e8fff49d8ab9e61244955ccc891

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17d12b5e195a1220b9b173647ba215cb680fd82f5f5f9e68a34a9dc16c27d491
MD5 4bad0ba8d5cc3a9f3befb52d8922699d
BLAKE2b-256 b57fdc276d4de64ccd92195150a3bc5b5ffa481482301e21c690dc6f6061a88b

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1a6c7cec76c545a181f1b4987988871dba8fd5966b760b66f7e79f4c4565ef94
MD5 06551916012afe594b64ee6ad7a5f58d
BLAKE2b-256 152a536c4257c1519bd68221e5cc21a585fc744c1c858e5aa05dc95c872716f9

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b7b9a6aaf807a0ed0a0d3615206b67f46b56f52a94dcdc50d7412b40b76418a
MD5 577a112ddf377aa26e5eba6a6183e06a
BLAKE2b-256 f1123147e44627f95c07a398b4651bdf350edef2acc82b090c94413f0ccd0dd1

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 242.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 009a80bd3d92915c02d2c2cc985fc602fa6ccb9e012a9d17b77a0d9baeb14dc2
MD5 2bd5fe1afa58d16cb531d3f141b6bf31
BLAKE2b-256 5022fe0097ee88ae38283f5cd6dd92a5932ddd7faee23799d896ecd0021e80e5

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a6dc625a66f3fe4fa2976585cb33f90584f58995197325ac179a01a3faa4fea
MD5 51e4e2aa00238be6a11e4a7e8518433f
BLAKE2b-256 16ee388a5c76c9292f4bef85d7ef895005bb39a0899f8004e9daceb57b2bb0c9

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f70107549c9811a3d36d7ad184ee2eb69800d5fd652ed09e7ec9e9b51b82ab9a
MD5 64bb2ecdedfdca2d9e683037b698c862
BLAKE2b-256 a8beda6d20c2f5a3748bde29b0af6aedaea3638a18eb04e69cfb499f1b9635d6

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f3d78f7a0da75a7d6481db1a6b6d5c495caa558f52fcaa7800b05b013518732f
MD5 0fa999dd535ec8d756372d85aad32926
BLAKE2b-256 6edc91dc97dcf65536547ba34f85a86fc89fd609d77bec1b35f994b93864a9ce

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50c2f950dbfffd6ff32525a4dc902cff94c9530d68bc14b6a7d27e363ffaf8df
MD5 5608f6b9d889b91d757e5f9d07eb449c
BLAKE2b-256 eb755069dc538630ec26297af1b09822c27588d251deaef6943d795e14845161

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 236.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1f777dddfb4c2de9eec60bda92a1c4d4aea811a4d566ffe28ec4f56dacaaf139
MD5 61dbb13ee0a03b7d626e6d5b0b68931a
BLAKE2b-256 dff31cb87bdcce63cbe5e3def66505aff523e29c50fbfd739c4cd7313266f0e4

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e1920a658a709f1366d0536d0e848b1bfb1370d16126480dc670ddd52626773
MD5 9231431acc89e95622a82fc5c34e24bb
BLAKE2b-256 5146bf93327bf39f8e00f9fdf5ada0e13e49c1134a626d450bf960d38ebbe645

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d8efe2add424b711ff6021f670498e9e0298dd92131553e52570558ec8b4c7c
MD5 6c31cffdbd9361316bcaa2b61d337aec
BLAKE2b-256 0b57361a7920007d4ae00e36ec19c199969faac18ab3c1dabbcdfeb7a3b5a488

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 c24db59a80883e15361c3c23c16f9f50bb5df47cec5a5253510e1cff97e49970
MD5 02c1255aef2451dbd9ca957bc991487f
BLAKE2b-256 ec7b38e6438e846226dc23fcd0a5426d5c65ca02562a8889586aa012579f54f0

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 620bc8218a8586f56f2ddcc9e21657cdefa03c255d9e85a0f0cd2346ef1acc56
MD5 2e6a42a2b7cf1ab41a6c0d425863566e
BLAKE2b-256 0d191e54513a974cc33c9d311bed6d9942330db9da4bc82097b4821a35f214f6

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 242.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 217dc18c3cbd2491c2c49fc7cfb9b55eb94af19930bbef65f24037e28af59ea8
MD5 f17c82e2b4a43154cd264f5b5aa135b3
BLAKE2b-256 1d3c7cba3dc4b552ebe024f4b080254e04df1dabc7165dacfbefd097a7617ba2

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 101620e4b94e671b45b7c1e7c3c532cf45b3e37561c8e3b656d451c13e0a6f3a
MD5 119dd17209409c6c403fac60b081ced2
BLAKE2b-256 77bee24697c0d9570e54218d7a8b6a5df847d5b21a0209f59b00c1359af09927

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8486d383a077f4b41f78293d29a81afeee0f7fc4865b8cf39b218ff2135afa9
MD5 9fe2ffde4e140d0217e73d6fb32be98d
BLAKE2b-256 573b1146f0ad480f03dde72398e2002cee099dd0e1c98c003699a93cabc5df27

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f213a01af2bd9f1f151cd633d35f8561341214c8c4a3828c6dbad170e846c605
MD5 7d51919fbf812cbc28017ccc5dc83450
BLAKE2b-256 7643089931263cdd25eabd0bef47080b23b71219c098953b62adb8f3e21882e1

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 63c649375187e3ae5fa7921527f6c44eedba618ab9d2b4047d05a1d501e93dd4
MD5 0b97c112e5be680a8d0a1c56e794acf3
BLAKE2b-256 8cb898dfa14cca8ac78c22f8b2c6f5ed0bd399e19d68ca1b4f4aee99eb1dc6a0

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 241.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b5b58fac25bab7b513e350a122270ed5637da6179a98e36939f934d82385ac6b
MD5 76bd2599e4e6dbc10ed6058a6c2c5e89
BLAKE2b-256 668047862ae02b12364db535e6f8d173b08c823f40d1104032b706014a352e36

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a29128c874c3c453729e89783f667d62235d609c926c644f3d48503fed93ff61
MD5 f1347dde302759b832cf8dd8354e3b49
BLAKE2b-256 e8a6de37fcf5edc00b0ce4eb388a801694303b3e920e7bf68a90c0822a012240

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b438963856a4903732309a3319f0681806a3bf084651354daa5b3265f4c64380
MD5 7eac549999400324187e5bb25f099617
BLAKE2b-256 644bffb7e475a9ff9a0557bf9ac493b1ab60e4c99d7017d28aa00a17c722faf3

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp37-cp37m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp37-cp37m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 088006325cba178fd725745ea2d935985723f7bc40762bbbd9e518188774de40
MD5 664b264f26678356daa7d4bb273ab6b0
BLAKE2b-256 09d47e232994fc7b868a98a0775cae40309b1faa7b49587d876dfb4e88adafa2

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: floret-0.10.5-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 255.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for floret-0.10.5-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7ea662bab1db425c07a969a0efc41747e05daf50fe24fffeb7661360961ce44f
MD5 34916c4240cbba308a6b1d576f219d14
BLAKE2b-256 4e31b8ece93aac950526e45d930ec131e62ba5c9b6f911eba5d5ac2ee28abd6d

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 994993a16675c33eeec561f32b2233dff8e39267c426a510c01158612fbde4b8
MD5 598b322a39d0734b11eed7d3ce068d1f
BLAKE2b-256 66df1b2bc3a8bf8715a4da9fada02129e162a69e866f79c87ce41ab8f558195f

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e9a905fe7e46e48634835681256afa3e296b6b7350c1939c70e73c221f009d99
MD5 cc2dc713d9a890e652eadf37ce5d2e85
BLAKE2b-256 16c7081541a12e8fce81c49dab450f6edbbd87e9760f52f96a8fb3162f28dfc0

See more details on using hashes here.

File details

Details for the file floret-0.10.5-cp36-cp36m-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for floret-0.10.5-cp36-cp36m-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 c2ba155ce1dd704c0424fa2ce0118ffde4418ee3785d7dbeda3a1a0e13f009ac
MD5 58f8dde8a094a19a621f0180023aea7a
BLAKE2b-256 6bb5a6fa30b2bb1235f31fda9734b67a4da34d31a93b11db2285f9aa43a86725

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page