Skip to main content

Flow Immersive python client for datasets API

Project description

Flow Immersive Python Client

An easy way to push data from pandas to Flow.

Usage

Push data to Flow, identifying the dataset with a title. Pushing a new dataset with the same title will create a new dataset version.

import pandas as pd

# Example pandas dataframe
df = pd.DataFrame({
    'name': ['John', 'Jane', 'Joe'],
    'age': [30, 25, 40],
    'city': ['New York', 'San Francisco', 'Los Angeles']
})

from flowgl import Client

# Import the client and create an instance with your credentials
client = Client(
    username=...,
    password=...,
)

# Push the dataframe to Flow by title
client.push_data(
    df,
    dataset_title='My Dataset',
)

If you're working with a dictionary of nodes and edges, you can use the push_nodes_and_edges_dict method, referencing the nodes list and edges list in the provided dictionary by jsonpath.

my_dict = {
    'nested_object': {
        'nodes': [
            {'id': 1, 'name': 'John'},
            {'id': 2, 'name': 'Jane'},
            {'id': 3, 'name': 'Joe'},
        ],
        'edges': [
            {'source': 1, 'target': 2},
            {'source': 2, 'target': 3},
        ]
    }
}

client.push_nodes_and_edges_dict(
    my_dict,
    nodes_jsonpath='$.nested_object.nodes',
    edges_jsonpath='$.nested_object.edges',
    dataset_title='My Dataset',
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flowgl-0.1.4.post1.tar.gz (3.5 kB view hashes)

Uploaded Source

Built Distribution

flowgl-0.1.4.post1-py3-none-any.whl (3.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page