Skip to main content

A tool for downloading Spanish COVID-19 and mobility data

Project description

DOI

flowmaps-data

A tool for downloading COVID-19 and mobility datasets for Spain.

The database integrates two main types of data:

  1. Time dependent population mobility networks across Spain (provided by MITMA and INE)

  2. Daily reports of COVID-19 cases in Spain, at different levels of spatial resolution (provided by the CNE and the different Autonomous Communities)

All the data records are associated with a specific area from a geographic layer:

  1. Geographic layers for Spain, in geojson format, at different levels of spatial resolution.

All the data has been gather from official access points.

More info about the data: https://flowmaps.life.bsc.es/flowboard/data

API: https://flowmaps.life.bsc.es/api

Contact us: https://flowmaps.life.bsc.es/flowboard/contact

Installation

Install using pip:

pip install flowmaps-data

Install manually:

Create virtual environment:

virtualenv env --python=python3
source env/bin/activate

Install python dependencies:

pip3 install -r requirements.txt

Usage

Command line utility

usage: flowmaps-data [-h] COLLECTION [list describe download]

examples: 

    # Geojson layers
    flowmaps-data layers list
    flowmaps-data layers describe --layer cnig_provincias --provenance
    flowmaps-data layers describe --layer cnig_provincias --plot
    flowmaps-data layers download --layer cnig_provincias

    # Consolidated COVID-19 data
    flowmaps-data covid19 list
    flowmaps-data covid19 describe --ev ES.covid_cpro
    flowmaps-data covid19 download --ev ES.covid_cpro --output-file out.csv --output-type csv

    # Deceased datasets
    flowmaps-data deceased list
    flowmaps-data deceased describe --ev ES.hosp_covid_cpro
    flowmaps-data deceased download --ev ES.hosp_covid_cpro --output-file out.csv --output-type csv

    # Population
    flowmaps-data population list
    flowmaps-data population describe --layer cnig_provincias
    flowmaps-data population download --layer zbs_15 --output-file out.csv

    # Origin-destination daily mobility (from MITMA)
    flowmaps-data daily_mobility_matrix list
    flowmaps-data daily_mobility_matrix describe
    flowmaps-data daily_mobility_matrix download --source-layer cnig_provincias --target-layer cnig_provincias --start-date 2020-10-10 --end-date 2020-10-16 --output-file out.csv

    # Daily zone movements (from MITMA)
    flowmaps-data zone_movements list
    flowmaps-data zone_movements describe
    flowmaps-data zone_movements download --layer cnig_provincias --output-file out.csv --start-date 2020-10-10 --end-date 2020-10-10

    # Other datasets
    flowmaps-data datasets list
    flowmaps-data datasets describe --ev ES.covid_cpro
    flowmaps-data datasets download --ev ES.covid_cpro --output-file out.csv --output-type csv

    # Mobility Associated Risk
    flowmaps-data risk list
    flowmaps-data risk list-dates
    flowmaps-data risk download --source-layer cnig_provincias --target-layer cnig_provincias --ev ES.covid_cpro --date 2020-10-10 --output-file out.csv --output-format csv

Python module

from flowmaps_data import geolayer, covid19, dataset, daily_mobility_matrix, population, zone_movements

# Geojson layers
geojson = geolayer('cnig_provincias')

# Consolidated COVID-19 data
df = covid19(ev='ES.covid_cpro')

# Raw health datasets
df = dataset(ev='ES.covid_cpro')

# Origin-destination daily mobility (from MITMA)
df = daily_mobility_matrix(source_layer='cnig_provincias', target_layer='cnig_provincias', start_date='2020-11-01', end_date='2020-12-01', source='28', target='08')

# Daily zone movements (from MITMA)
df = zone_movements(layer='cnig_provincias')

# Population
df = population('cnig_provincias')

More examples

Plot daily incidence by province

from flowmaps_data import geolayer, covid19
import plotly.graph_objects as go

# Download geojson layer
geojson = geolayer('cnig_provincias')

# Download COVID-19 data
df = covid19(ev='ES.covid_cpro')

# Select data for one date
date = '2020-10-10'
df = df[df['date'] == date]

# Plot
fig = go.Figure(go.Choroplethmapbox(geojson=geojson,
                                    locations=date_df['id'],
                                    z=date_df['new_cases'],
                                    colorscale="Reds",
                                    marker_opacity=0.8))
fig.update_layout(title=f'Covid-19 daily incidence at {date}',
                  mapbox_style="carto-positron",
                  mapbox_zoom=4.5,
                  mapbox_center={"lat": 40.495178477814555, "lon": -3.717336960173357})
fig.update_layout(margin={"r":0,"t":30,"l":0,"b":0})
fig.show()

covid incidence by province

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flowmaps_data-0.0.25.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

flowmaps_data-0.0.25-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file flowmaps_data-0.0.25.tar.gz.

File metadata

  • Download URL: flowmaps_data-0.0.25.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.15

File hashes

Hashes for flowmaps_data-0.0.25.tar.gz
Algorithm Hash digest
SHA256 4a8d5d5239e2bd7bea93d7b326b91097f528130d31ef3b1bc6bb528099d48490
MD5 0db65af3dd29af3c7b7333648d7ea16a
BLAKE2b-256 4609585ea3cfcc756ae661735aac57d9b04844c042ccfc32154342a7f66d6e93

See more details on using hashes here.

File details

Details for the file flowmaps_data-0.0.25-py3-none-any.whl.

File metadata

  • Download URL: flowmaps_data-0.0.25-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.15

File hashes

Hashes for flowmaps_data-0.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 0650954610005324d578fb507e7df35da463e671e984279e2855ce944c4a7585
MD5 0984ceb580e473207de0a23c882b7344
BLAKE2b-256 0707087c3b523db1bb08b34f6215c58428cad79b5e621aa2ffdf5c74b837f47b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page