oneflow vision codebase
Project description
flowvision
Introduction
The flowvision package consists of popular datasets, SOTA computer vision models, layers, utilities, schedulers, advanced data augmentations and common image transformations based on OneFlow.
Installation
First install OneFlow, please refer to install-oneflow for more details.
Then install the latest stable release of flowvision
pip install flowvision==0.2.2
Overview of flowvision structure
Vision Models | Components | Augmentation and Datasets |
|
|
|
Documentation
Please refer to docs for full API documentation and tutorials
ChangeLog
Please refer to ChangeLog for details and release history
Model Zoo
We have conducted all the tests under the same setting, please refer to the model page here for more details.
Quick Start
Create a model
In flowvision we support two ways to create a model.
- Import the target model from
flowvision.models
, e.g., createalexnet
from flowvision
from flowvision.models.alexnet import alexnet
model = alexnet()
# will download the pretrained model
model = alexnet(pretrained=True)
# customize model to fit different number of classes
model = alexnet(num_classes=100)
- Or create model in an easier way by using
ModelCreator
, e.g., createalexnet
model byModelCreator
from flowvision.models import ModelCreator
alexnet = ModelCreator.create_model("alexnet")
# will download the pretrained model
alexnet = ModelCreator.create_model("alexnet", pretrained=True)
# customize model to fit different number of classes
alexnet = ModelCreator.create_model("alexnet", num_classes=100)
Tabulate all models with pretrained weights
ModelCreator.model_table()
returns a tabular results of available models in flowvision
. To check all of pretrained models, pass in pretrained=True
in ModelCreator.model_table()
.
from flowvision.models import ModelCreator
all_pretrained_models = ModelCreator.model_table(pretrained=True)
print(all_pretrained_models)
You can get the results like:
╒════════════════════════════════════════════╤══════════════╕
│ Supported Models │ Pretrained │
╞════════════════════════════════════════════╪══════════════╡
│ alexnet │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_1024_20 │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_1536_20 │ true │
├────────────────────────────────────────────┼──────────────┤
│ convmixer_768_32_relu │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_base_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_large_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_small_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ crossformer_tiny_patch4_group7_224 │ true │
├────────────────────────────────────────────┼──────────────┤
│ ... │ ... │
├────────────────────────────────────────────┼──────────────┤
│ wide_resnet101_2 │ true │
├────────────────────────────────────────────┼──────────────┤
│ wide_resnet50_2 │ true │
╘════════════════════════════════════════════╧══════════════╛
Search for supported model by Wildcard
It is easy to search for model architectures by using Wildcard as below:
from flowvision.models import ModelCreator
all_efficientnet_models = ModelCreator.model_table("**efficientnet**")
print(all_efficientnet_models)
You can get the results like:
╒════════════════════╤══════════════╕
│ Supported Models │ Pretrained │
╞════════════════════╪══════════════╡
│ efficientnet_b0 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b1 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b2 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b3 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b4 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b5 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b6 │ true │
├────────────────────┼──────────────┤
│ efficientnet_b7 │ true │
╘════════════════════╧══════════════╛
List all models supported in flowvision
ModelCreator.model_list
has similar function as ModelCreator.model_table
but return a list object, which gives the user a more flexible way to check the supported model in flowvision.
- List all models with pretrained weights
from flowvision.models import ModelCreator
all_pretrained_models = ModelCreator.model_list(pretrained=True)
print(all_pretrained_models[:5])
You can get the results like:
['alexnet',
'convmixer_1024_20',
'convmixer_1536_20',
'convmixer_768_32_relu',
'crossformer_base_patch4_group7_224']
- Support wildcard search
from flowvision.models import ModelCreator
all_efficientnet_models = ModelCreator.model_list("**efficientnet**")
print(all_efficientnet_models)
You can get the results like:
['efficientnet_b0',
'efficientnet_b1',
'efficientnet_b2',
'efficientnet_b3',
'efficientnet_b4',
'efficientnet_b5',
'efficientnet_b6',
'efficientnet_b7']
Disclaimer on Datasets
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file flowvision-0.2.2.tar.gz
.
File metadata
- Download URL: flowvision-0.2.2.tar.gz
- Upload date:
- Size: 339.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 104be064115322d64160a5a2cbc080333362459ab6a0015d675b4bf9a99f3010 |
|
MD5 | c0a117541a8b116c1696fe1b48f765e1 |
|
BLAKE2b-256 | 54a793ceb683e5ed7ccb3afa85926c3c1857c3a34e07d7c426748aac7a3fd745 |