Skip to main content

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as vision and text.

Project description

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) train a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and a variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregator aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client consists of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially occasional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data distributed across client devices)
  2. Create a corresponding torch.nn.Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g. accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable examples for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flsim-0.1.0.tar.gz (231.8 kB view details)

Uploaded Source

Built Distribution

flsim-0.1.0-py3-none-any.whl (340.4 kB view details)

Uploaded Python 3

File details

Details for the file flsim-0.1.0.tar.gz.

File metadata

  • Download URL: flsim-0.1.0.tar.gz
  • Upload date:
  • Size: 231.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.11 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9

File hashes

Hashes for flsim-0.1.0.tar.gz
Algorithm Hash digest
SHA256 52d5c0af0f9a32bea4704cde82e6980ecb0e8a974bf9b2d97d9683c1bbb0edd0
MD5 ddead4af0f59b6188bd261220ac3bb06
BLAKE2b-256 2e33542eda6534d3e943a8bd62ba7db746a8d6ac55d3cae035d5b6ef9fe85991

See more details on using hashes here.

File details

Details for the file flsim-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: flsim-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.11 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9

File hashes

Hashes for flsim-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2afa843889b80582f2d48eaf834633bc5d36ac5ce72620a904d9eaf508b19176
MD5 5cd7020a58cec7192c8fc1053a1b57af
BLAKE2b-256 c0490c904a24b7d240c061d06b6bc122770468955b63fcaf7b31419b699135ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page