Skip to main content

Use SQLAlchemy fluently

Project description

Fluent Alchemy

輕鬆流暢地使用 SQLAclhemy

Installation

pip insall fluent-alchemy

Quick start

  1. 宣告 Models 並繼承 ActiveRecord
# models.py
from sqlalchemy.orm import DeclarativeBase
from fluent_alchemy import ActiveRecord

class Base(DeclarativeBase, ActiveRecord):
    pass

class User(Base):
    __tablename__ = "users"

    id: Mapped[int] = mapped_column(BigInteger(), primary_key=True)
    email: Mapped[str] = mapped_column(String(), unique=True)
    password: Mapped[str] = mapped_column(String())
    name: Mapped[str] = mapped_column(String(50))
    state: Mapped[bool] = mapped_column(Boolean())
  1. 建立 SQLAclhemy Engine, 並指派給 ActiveRecord 內的 session handler
from sqlalchemy import create_engine
from models import Base

engine = create_engine("sqlite://:memory:", echo=True)

Base.set_engine(engine)
  1. 開始使用 model 操作 database !
from models import User

users = User.all()
  1. 使用完畢後,釋放 Session 資源
from models import Base

Base.remove_scoped_session()

Features

Active Record

利用 QueryBuilder 來處理 SQLAlchemy 的 select() query statement

  • Create

    from models import User
    
    user = User.create(
        name="Justin",
        email="corey97@example.org",
        password="NioWe9Wn#+"
    )
    
    # or
    
    user = User(
        name="Justin",
        email="corey97@example.org",
        password="NioWe9Wn#+"
    )
    user.save()
    
  • Read

    1. Find by id

      user = User.find(1)
      
    2. 只回傳特定欄位

      user = User.select(User.id, User.name, User.email).first()
      
    3. 透過 where 增加查詢條件

      user = User.where(User.email == "corey97@example.org").first()
      
      users = User.where(User.state.is_(True)).get()
      
  • Update

    user = User.find(1)
    user.passwod = "6xjVAY$p&D"
    
    user.save()
    
  • Delete

    user = User.find(1)
    user.delete()
    
  • Pagenate

    # setting page number and rows count per page
    pagination = User.paginate(page=1, per_page=15)
    
    """
    {
        "total": 100,
        "per_page": 15,
        "current_page": 1,
        "last_page": 7,
        "data": [ ... ], # ussers
    }
    """
    

Mixins

TimestampMixin

讓指定的 Model class 繼承 TimestampMixin,讓該 Model 補上 created_at, updated_at 欄位。

from fluent_alchemy import ActiveRecord, TimestampMixin

class Base(DeclarativeBase, ActiveRecord):
    pass

class User(Base, TimestampMixin):
    __tablename__ = "users"
    ...

###
user = User.find(1)

print(user.created_at)
print(user.updated_at)

SoftDeleteMixin

讓指定的 Model class 繼承 SoftDeleteMixin,就可以讓該 Model 擁有 Soft delete 的能力。

from sqlalchemy.orm import DeclarativeBase
from fluent_alchemy import ActiveRecord, SoftDeleteMixin

class Base(DeclarativeBase, ActiveRecord):
    pass

class User(Base, SoftDeleteMixin):
    __tablename__ = "users"

    id: Mapped[int] = mapped_column(BigInteger(), primary_key=True)
    email: Mapped[str] = mapped_column(String(), unique=True)
    password: Mapped[str] = mapped_column(String())
    name: Mapped[str] = mapped_column(String(50))
    state: Mapped[bool] = mapped_column(Boolean())

SoftDeleteMixin 會自動補上 deleted_at 欄位,依此欄位來處理 soft delete 的資料。

deleted_at: Mapped[Optional[datetime]] = mapped_column(TIMESTAMP(), nullable=True)

設定完成後,之後對此 Model 進行 Query 時,會在 statement 內的 WHERE 條件自動加上 deleted_at IS NULL

查詢已被標記刪除的資料

users_deleted = User.where(...).get(with_trashed=True)

強制刪除 (Force delete)

user = User.find(1)

user.delete(force=True)

Examples

在 FastAPI 內使用

from contextlib import asynccontextmanager
from fastapi import FastAPI, Depends
from app.models import BaseModel, User

def close_scoped_session():
    """
    Remove the scoped session at the enf of every request.
    """
    yield
    BaseModel.remove_scoped_session()

@asynccontextmanager
async def lifespan(app: FastAPI):
    """
    Set engine to the ScopedSessionHandler when FastAPI app started.
    """
    BaseModel.set_engine(engine)
    yield

app = FastAPI(
    title="MyApp",
    dependencies=[Depends(close_scoped_session)],
    lifespan=lifespan
)

@app.get("/users")
def index():
    return User.all()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fluent_alchemy-0.0.1.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

fluent_alchemy-0.0.1-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file fluent_alchemy-0.0.1.tar.gz.

File metadata

  • Download URL: fluent_alchemy-0.0.1.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.11 Darwin/23.2.0

File hashes

Hashes for fluent_alchemy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 9674383a4264418a2734a0db37695b1e9191a29d87fd0f5d74f23c04be0b0e6d
MD5 576b20421329c05086ea49f2e88e417f
BLAKE2b-256 ba626ff76670a57ce77c228f622045fe6e308a23f745d2c4e240529bff5269b2

See more details on using hashes here.

File details

Details for the file fluent_alchemy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: fluent_alchemy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.11 Darwin/23.2.0

File hashes

Hashes for fluent_alchemy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a401ef0aa2b2cc425701d400fe963bac8822f9451d4a863785f89e227b5bea4a
MD5 53c3c98c3049111d7adfa1215c5c0186
BLAKE2b-256 2619f1a42ac368d6bd475964a320e51b60e64a468f06951cec41be91a15a011d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page