Use SQLAlchemy fluently
Project description
Fluent Alchemy
輕鬆流暢地使用 SQLAclhemy
Installation
pip insall fluent-alchemy
Quick start
- 宣告 Models 並繼承
ActiveRecord
# models.py
from sqlalchemy.orm import DeclarativeBase
from fluent_alchemy import ActiveRecord
class Base(DeclarativeBase, ActiveRecord):
pass
class User(Base):
__tablename__ = "users"
id: Mapped[int] = mapped_column(BigInteger(), primary_key=True)
email: Mapped[str] = mapped_column(String(), unique=True)
password: Mapped[str] = mapped_column(String())
name: Mapped[str] = mapped_column(String(50))
state: Mapped[bool] = mapped_column(Boolean())
- 建立 SQLAclhemy Engine, 並指派給
ActiveRecord
內的 session handler
from sqlalchemy import create_engine
from models import Base
engine = create_engine("sqlite://:memory:", echo=True)
Base.set_engine(engine)
- 開始使用 model 操作 database !
from models import User
users = User.all()
- 使用完畢後,釋放 Session 資源
from models import Base
Base.remove_scoped_session()
Features
Active Record
利用 QueryBuilder
來處理 SQLAlchemy 的 select()
query statement
-
Create
from models import User user = User.create( name="Justin", email="corey97@example.org", password="NioWe9Wn#+" ) # or user = User( name="Justin", email="corey97@example.org", password="NioWe9Wn#+" ) user.save()
-
Read
-
Find by id
user = User.find(1)
-
只回傳特定欄位
user = User.select(User.id, User.name, User.email).first()
-
透過
where
增加查詢條件user = User.where(User.email == "corey97@example.org").first()
users = User.where(User.state.is_(True)).get()
-
-
Update
user = User.find(1) user.passwod = "6xjVAY$p&D" user.save()
-
Delete
user = User.find(1) user.delete()
-
Pagenate
# setting page number and rows count per page pagination = User.paginate(page=1, per_page=15) """ { "total": 100, "per_page": 15, "current_page": 1, "last_page": 7, "data": [ ... ], # ussers } """
Mixins
TimestampMixin
讓指定的 Model class 繼承 TimestampMixin
,讓該 Model 補上 created_at
, updated_at
欄位。
from fluent_alchemy import ActiveRecord, TimestampMixin
class Base(DeclarativeBase, ActiveRecord):
pass
class User(Base, TimestampMixin):
__tablename__ = "users"
...
###
user = User.find(1)
print(user.created_at)
print(user.updated_at)
SoftDeleteMixin
讓指定的 Model class 繼承 SoftDeleteMixin
,就可以讓該 Model 擁有 Soft delete 的能力。
from sqlalchemy.orm import DeclarativeBase
from fluent_alchemy import ActiveRecord, SoftDeleteMixin
class Base(DeclarativeBase, ActiveRecord):
pass
class User(Base, SoftDeleteMixin):
__tablename__ = "users"
id: Mapped[int] = mapped_column(BigInteger(), primary_key=True)
email: Mapped[str] = mapped_column(String(), unique=True)
password: Mapped[str] = mapped_column(String())
name: Mapped[str] = mapped_column(String(50))
state: Mapped[bool] = mapped_column(Boolean())
SoftDeleteMixin
會自動補上 deleted_at
欄位,依此欄位來處理 soft delete 的資料。
deleted_at: Mapped[Optional[datetime]] = mapped_column(TIMESTAMP(), nullable=True)
設定完成後,之後對此 Model 進行 Query 時,會在 statement 內的 WHERE 條件自動加上 deleted_at IS NULL
。
查詢已被標記刪除的資料
users_deleted = User.where(...).get(with_trashed=True)
強制刪除 (Force delete)
user = User.find(1)
user.delete(force=True)
Examples
在 FastAPI 內使用
from contextlib import asynccontextmanager
from fastapi import FastAPI, Depends
from app.models import BaseModel, User
def close_scoped_session():
"""
Remove the scoped session at the enf of every request.
"""
yield
BaseModel.remove_scoped_session()
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
Set engine to the ScopedSessionHandler when FastAPI app started.
"""
BaseModel.set_engine(engine)
yield
app = FastAPI(
title="MyApp",
dependencies=[Depends(close_scoped_session)],
lifespan=lifespan
)
@app.get("/users")
def index():
return User.all()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fluent_alchemy-0.0.1.tar.gz
(7.6 kB
view details)
Built Distribution
File details
Details for the file fluent_alchemy-0.0.1.tar.gz
.
File metadata
- Download URL: fluent_alchemy-0.0.1.tar.gz
- Upload date:
- Size: 7.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.11 Darwin/23.2.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9674383a4264418a2734a0db37695b1e9191a29d87fd0f5d74f23c04be0b0e6d |
|
MD5 | 576b20421329c05086ea49f2e88e417f |
|
BLAKE2b-256 | ba626ff76670a57ce77c228f622045fe6e308a23f745d2c4e240529bff5269b2 |
File details
Details for the file fluent_alchemy-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: fluent_alchemy-0.0.1-py3-none-any.whl
- Upload date:
- Size: 8.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.10.11 Darwin/23.2.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a401ef0aa2b2cc425701d400fe963bac8822f9451d4a863785f89e227b5bea4a |
|
MD5 | 53c3c98c3049111d7adfa1215c5c0186 |
|
BLAKE2b-256 | 2619f1a42ac368d6bd475964a320e51b60e64a468f06951cec41be91a15a011d |