Skip to main content

Flower: A Friendly Federated AI Framework

Project description

Flower: A Friendly Federated AI Framework

Flower Website

Website | Blog | Docs | Conference | Slack

GitHub license PRs Welcome Build Downloads Docker Hub Slack

Flower (flwr) is a framework for building federated AI systems. The design of Flower is based on a few guiding principles:

  • Customizable: Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case.

  • Extendable: Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems.

  • Framework-agnostic: Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.

  • Understandable: Flower is written with maintainability in mind. The community is encouraged to both read and contribute to the codebase.

Meet the Flower community on flower.ai!

Federated Learning Tutorial

Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.

  1. What is Federated Learning?

    Open in Colab (or open the Jupyter Notebook)

  2. An Introduction to Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  3. Using Strategies in Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  4. Building Strategies for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  5. Custom Clients for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

Stay tuned, more tutorials are coming soon. Topics include Privacy and Security in Federated Learning, and Scaling Federated Learning.

30-Minute Federated Learning Tutorial

Open in Colab (or open the Jupyter Notebook)

Documentation

Flower Docs:

Flower Baselines

Flower Baselines is a collection of community-contributed projects that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas. The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline!

Please refer to the Flower Baselines Documentation for a detailed categorization of baselines and for additional info including:

Flower Usage Examples

Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).

Quickstart examples:

Other examples:

Community

Flower is built by a wonderful community of researchers and engineers. Join Slack to meet them, contributions are welcome.

Citation

If you publish work that uses Flower, please cite Flower as follows:

@article{beutel2020flower,
  title={Flower: A Friendly Federated Learning Research Framework},
  author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D},
  journal={arXiv preprint arXiv:2007.14390},
  year={2020}
}

Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.

Contributing to Flower

We welcome contributions. Please see CONTRIBUTING.md to get started!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flwr_nightly-1.13.0.dev20241117.tar.gz (298.1 kB view details)

Uploaded Source

Built Distribution

flwr_nightly-1.13.0.dev20241117-py3-none-any.whl (512.0 kB view details)

Uploaded Python 3

File details

Details for the file flwr_nightly-1.13.0.dev20241117.tar.gz.

File metadata

  • Download URL: flwr_nightly-1.13.0.dev20241117.tar.gz
  • Upload date:
  • Size: 298.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.9.20 Linux/6.5.0-1025-azure

File hashes

Hashes for flwr_nightly-1.13.0.dev20241117.tar.gz
Algorithm Hash digest
SHA256 cd2e61cdff1871a45ba9614e5f011be3cce2ea6f91c4598a517bf4273120170b
MD5 fa6933e165fa355e086a9d4a4598db94
BLAKE2b-256 1707134f9818ce97141afae9cf9e6949d9b7efbb2c84b2967f479cd493455e63

See more details on using hashes here.

File details

Details for the file flwr_nightly-1.13.0.dev20241117-py3-none-any.whl.

File metadata

File hashes

Hashes for flwr_nightly-1.13.0.dev20241117-py3-none-any.whl
Algorithm Hash digest
SHA256 d3fbde3b3d15a319d2ad44b9895e044dec10f804b652458259a020478a47c67c
MD5 c2b4cf5a7c90c54345d5a8332c5535d0
BLAKE2b-256 766befd7ddfddf5cd95a7b2e2447b1c16f0560d77b04b984b0002d9445f6f501

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page