Skip to main content

Flower: A Friendly Federated Learning Framework

Project description

Flower: A Friendly Federated Learning Framework

Flower Website

Website | Blog | Docs | Conference | Slack

GitHub license PRs Welcome Build Downloads Slack

Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles:

  • Customizable: Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case.

  • Extendable: Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems.

  • Framework-agnostic: Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, MXNet, scikit-learn, JAX, TFLite, fastai, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.

  • Understandable: Flower is written with maintainability in mind. The community is encouraged to both read and contribute to the codebase.

Meet the Flower community on flower.dev!

Federated Learning Tutorial

Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.

  1. What is Federated Learning?

    Open in Colab (or open the Jupyter Notebook)

  2. An Introduction to Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  3. Using Strategies in Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  4. Building Strategies for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  5. Custom Clients for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

Stay tuned, more tutorials are coming soon. Topics include Privacy and Security in Federated Learning, and Scaling Federated Learning.

30-Minute Federated Learning Tutorial

Open in Colab (or open the Jupyter Notebook)

Documentation

Flower Docs:

Flower Baselines

Flower Baselines is a collection of community-contributed experiments that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas:

Check the Flower documentation to learn more: Using Baselines

The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline: Contributing Baselines

Flower Usage Examples

Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).

Quickstart examples:

Other examples:

Community

Flower is built by a wonderful community of researchers and engineers. Join Slack to meet them, contributions are welcome.

Citation

If you publish work that uses Flower, please cite Flower as follows:

@article{beutel2020flower,
  title={Flower: A Friendly Federated Learning Research Framework},
  author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D},
  journal={arXiv preprint arXiv:2007.14390},
  year={2020}
}

Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.

Contributing to Flower

We welcome contributions. Please see CONTRIBUTING.md to get started!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flwr_nightly-1.6.0.dev20231104.tar.gz (120.9 kB view details)

Uploaded Source

Built Distribution

flwr_nightly-1.6.0.dev20231104-py3-none-any.whl (209.3 kB view details)

Uploaded Python 3

File details

Details for the file flwr_nightly-1.6.0.dev20231104.tar.gz.

File metadata

  • Download URL: flwr_nightly-1.6.0.dev20231104.tar.gz
  • Upload date:
  • Size: 120.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.18 Linux/6.2.0-1015-azure

File hashes

Hashes for flwr_nightly-1.6.0.dev20231104.tar.gz
Algorithm Hash digest
SHA256 76b75bfda2de90d0400396cf76ed1c6c49b01c992f9f0a9aafef2818a5c16c94
MD5 95381b25b4e93e5dd139610295b219d3
BLAKE2b-256 af4008079036df3d845d127853c421f4d1811e1898bae2bd8558879e566c0270

See more details on using hashes here.

File details

Details for the file flwr_nightly-1.6.0.dev20231104-py3-none-any.whl.

File metadata

File hashes

Hashes for flwr_nightly-1.6.0.dev20231104-py3-none-any.whl
Algorithm Hash digest
SHA256 c50ea9bbd923cbfbd0b74e6c07b70860f97c28f9996e9895d46ab8224e98b684
MD5 4c733bb8dcaf30ebfc99b1209afc8f7a
BLAKE2b-256 c008fa5e019059fced50878b93a90d5efbccbd1d4297af44df6366a48b9bb655

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page