Skip to main content

Flower: A Friendly Federated Learning Framework

Project description

Flower: A Friendly Federated Learning Framework

Flower Website

Website | Blog | Docs | Conference | Slack

GitHub license PRs Welcome Build Downloads Slack

Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles:

  • Customizable: Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case.

  • Extendable: Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new state-of-the-art systems.

  • Framework-agnostic: Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.

  • Understandable: Flower is written with maintainability in mind. The community is encouraged to both read and contribute to the codebase.

Meet the Flower community on flower.dev!

Federated Learning Tutorial

Flower's goal is to make federated learning accessible to everyone. This series of tutorials introduces the fundamentals of federated learning and how to implement them in Flower.

  1. What is Federated Learning?

    Open in Colab (or open the Jupyter Notebook)

  2. An Introduction to Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  3. Using Strategies in Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  4. Building Strategies for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

  5. Custom Clients for Federated Learning

    Open in Colab (or open the Jupyter Notebook)

Stay tuned, more tutorials are coming soon. Topics include Privacy and Security in Federated Learning, and Scaling Federated Learning.

30-Minute Federated Learning Tutorial

Open in Colab (or open the Jupyter Notebook)

Documentation

Flower Docs:

Flower Baselines

Flower Baselines is a collection of community-contributed projects that reproduce the experiments performed in popular federated learning publications. Researchers can build on Flower Baselines to quickly evaluate new ideas. The Flower community loves contributions! Make your work more visible and enable others to build on it by contributing it as a baseline!

Please refer to the Flower Baselines Documentation for a detailed categorization of baselines and for additional info including:

Flower Usage Examples

Several code examples show different usage scenarios of Flower (in combination with popular machine learning frameworks such as PyTorch or TensorFlow).

Quickstart examples:

Other examples:

Community

Flower is built by a wonderful community of researchers and engineers. Join Slack to meet them, contributions are welcome.

Citation

If you publish work that uses Flower, please cite Flower as follows:

@article{beutel2020flower,
  title={Flower: A Friendly Federated Learning Research Framework},
  author={Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D},
  journal={arXiv preprint arXiv:2007.14390},
  year={2020}
}

Please also consider adding your publication to the list of Flower-based publications in the docs, just open a Pull Request.

Contributing to Flower

We welcome contributions. Please see CONTRIBUTING.md to get started!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flwr_nightly-1.8.0.dev20240214.tar.gz (137.0 kB view details)

Uploaded Source

Built Distribution

flwr_nightly-1.8.0.dev20240214-py3-none-any.whl (239.2 kB view details)

Uploaded Python 3

File details

Details for the file flwr_nightly-1.8.0.dev20240214.tar.gz.

File metadata

  • Download URL: flwr_nightly-1.8.0.dev20240214.tar.gz
  • Upload date:
  • Size: 137.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.18 Linux/6.2.0-1019-azure

File hashes

Hashes for flwr_nightly-1.8.0.dev20240214.tar.gz
Algorithm Hash digest
SHA256 7a88c5bde4b82d785576ebfffdd006e81e3f5817fa8a6e17a694b0a0188b3651
MD5 73f16db52b551d0bc1dede5a30f3ec7f
BLAKE2b-256 812e45257b66aa9b09df89b3d66545fdc72c64eb39ca75627e4bcdf6ea421418

See more details on using hashes here.

File details

Details for the file flwr_nightly-1.8.0.dev20240214-py3-none-any.whl.

File metadata

File hashes

Hashes for flwr_nightly-1.8.0.dev20240214-py3-none-any.whl
Algorithm Hash digest
SHA256 f35646e9c39cfa1c23bf8c28db76911bbe51398f5dc4d3561828019006c55f9e
MD5 c75dbb1c538f55e3d3a6024ed63208d8
BLAKE2b-256 57088845e1de86d48bb8312b6e7f814ef19ea6cab5d5a331f7e719305f10406d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page